This repository has been archived on 2025-03-12. You can view files and clone it, but cannot push or open issues or pull requests.
AIDungeon/generator/gpt2/src/model.py
2025-03-11 22:26:45 -04:00

205 lines
6.6 KiB
Python

import numpy as np
import tensorflow as tf
from tensorflow.contrib.training import HParams
def default_hparams():
return HParams(n_vocab=0, n_ctx=1024, n_embd=768, n_head=12, n_layer=12,)
def shape_list(x):
"""Deal with dynamic shape in tensorflow cleanly."""
static = x.shape.as_list()
dynamic = tf.shape(x)
return [dynamic[i] if s is None else s for i, s in enumerate(static)]
def softmax(x, axis=-1):
x = x - tf.reduce_max(x, axis=axis, keepdims=True)
ex = tf.exp(x)
return ex / tf.reduce_sum(ex, axis=axis, keepdims=True)
def gelu(x):
return 0.5 * x * (1 + tf.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))
def norm(x, scope, *, axis=-1, epsilon=1e-5):
"""Normalize to mean = 0, std = 1, then do a diagonal affine transform."""
with tf.variable_scope(scope):
n_state = x.shape[-1].value
g = tf.get_variable("g", [n_state], initializer=tf.constant_initializer(1))
b = tf.get_variable("b", [n_state], initializer=tf.constant_initializer(0))
u = tf.reduce_mean(x, axis=axis, keepdims=True)
s = tf.reduce_mean(tf.square(x - u), axis=axis, keepdims=True)
x = (x - u) * tf.rsqrt(s + epsilon)
x = x * g + b
return x
def split_states(x, n):
"""Reshape the last dimension of x into [n, x.shape[-1]/n]."""
*start, m = shape_list(x)
return tf.reshape(x, start + [n, m // n])
def merge_states(x):
"""Smash the last two dimensions of x into a single dimension."""
*start, a, b = shape_list(x)
return tf.reshape(x, start + [a * b])
def conv1d(x, scope, nf, *, w_init_stdev=0.02):
with tf.variable_scope(scope):
*start, nx = shape_list(x)
w = tf.get_variable(
"w",
[1, nx, nf],
initializer=tf.random_normal_initializer(stddev=w_init_stdev),
)
b = tf.get_variable("b", [nf], initializer=tf.constant_initializer(0))
c = tf.reshape(
tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf])) + b,
start + [nf],
)
return c
def attention_mask(nd, ns, *, dtype):
"""1's in the lower triangle, counting from the lower right corner.
Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
"""
i = tf.range(nd)[:, None]
j = tf.range(ns)
m = i >= j - ns + nd
return tf.cast(m, dtype)
def attn(x, scope, n_state, *, past, hparams):
assert x.shape.ndims == 3 # Should be [batch, sequence, features]
assert n_state % hparams.n_head == 0
if past is not None:
assert (
past.shape.ndims == 5
) # Should be [batch, 2, heads, sequence, features], where 2 is [k, v]
def split_heads(x):
# From [batch, sequence, features] to [batch, heads, sequence, features]
return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3])
def merge_heads(x):
# Reverse of split_heads
return merge_states(tf.transpose(x, [0, 2, 1, 3]))
def mask_attn_weights(w):
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
_, _, nd, ns = shape_list(w)
b = attention_mask(nd, ns, dtype=w.dtype)
b = tf.reshape(b, [1, 1, nd, ns])
w = w * b - tf.cast(1e10, w.dtype) * (1 - b)
return w
def multihead_attn(q, k, v):
# q, k, v have shape [batch, heads, sequence, features]
w = tf.matmul(q, k, transpose_b=True)
w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))
w = mask_attn_weights(w)
w = softmax(w)
a = tf.matmul(w, v)
return a
with tf.variable_scope(scope):
c = conv1d(x, "c_attn", n_state * 3)
q, k, v = map(split_heads, tf.split(c, 3, axis=2))
present = tf.stack([k, v], axis=1)
if past is not None:
pk, pv = tf.unstack(past, axis=1)
k = tf.concat([pk, k], axis=-2)
v = tf.concat([pv, v], axis=-2)
a = multihead_attn(q, k, v)
a = merge_heads(a)
a = conv1d(a, "c_proj", n_state)
return a, present
def mlp(x, scope, n_state, *, hparams):
with tf.variable_scope(scope):
nx = x.shape[-1].value
h = gelu(conv1d(x, "c_fc", n_state))
h2 = conv1d(h, "c_proj", nx)
return h2
def block(x, scope, *, past, hparams):
with tf.variable_scope(scope):
nx = x.shape[-1].value
a, present = attn(norm(x, "ln_1"), "attn", nx, past=past, hparams=hparams)
x = x + a
m = mlp(norm(x, "ln_2"), "mlp", nx * 4, hparams=hparams)
x = x + m
return x, present
def past_shape(*, hparams, batch_size=None, sequence=None):
return [
batch_size,
hparams.n_layer,
2,
hparams.n_head,
sequence,
hparams.n_embd // hparams.n_head,
]
def expand_tile(value, size):
"""Add a new axis of given size."""
value = tf.convert_to_tensor(value, name="value")
ndims = value.shape.ndims
return tf.tile(tf.expand_dims(value, axis=0), [size] + [1] * ndims)
def positions_for(tokens, past_length):
batch_size = tf.shape(tokens)[0]
nsteps = tf.shape(tokens)[1]
return expand_tile(past_length + tf.range(nsteps), batch_size)
def model(hparams, X, past=None, scope="model", reuse=False):
with tf.variable_scope(scope, reuse=reuse):
results = {}
batch, sequence = shape_list(X)
wpe = tf.get_variable(
"wpe",
[hparams.n_ctx, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.01),
)
wte = tf.get_variable(
"wte",
[hparams.n_vocab, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.02),
)
past_length = 0 if past is None else tf.shape(past)[-2]
h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length))
# Transformer
presents = []
pasts = (
tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer
)
assert len(pasts) == hparams.n_layer
for layer, past in enumerate(pasts):
h, present = block(h, "h%d" % layer, past=past, hparams=hparams)
presents.append(present)
results["present"] = tf.stack(presents, axis=1)
h = norm(h, "ln_f")
# Language model loss. Do tokens <n predict token n?
h_flat = tf.reshape(h, [batch * sequence, hparams.n_embd])
logits = tf.matmul(h_flat, wte, transpose_b=True)
logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab])
results["logits"] = logits
return results