1016 lines
25 KiB
C
1016 lines
25 KiB
C
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include "main.h"
|
|
#include "misc.h"
|
|
#include "funcs.h"
|
|
|
|
/* hack to ignore GCC Unused Result */
|
|
#define IGNORE(r) do{if(r){}}while(0)
|
|
|
|
/* I/O routines (SPEAK, PSPEAK, RSPEAK, SETPRM, GETIN, YES) */
|
|
|
|
#undef SPEAK
|
|
void fSPEAK(long N) {
|
|
long BLANK, CASE, I, K, L, NEG, NPARMS, PARM, PRMTYP, STATE;
|
|
|
|
/* Print the message which starts at LINES(N). Precede it with a blank line
|
|
* unless BLKLIN is false. */
|
|
|
|
|
|
if(N == 0)return;
|
|
BLANK=BLKLIN;
|
|
K=N;
|
|
NPARMS=1;
|
|
L10: L=IABS(LINES[K])-1;
|
|
K=K+1;
|
|
LNLENG=0;
|
|
LNPOSN=1;
|
|
STATE=0;
|
|
for (I=K; I<=L; I++) {
|
|
PUTTXT(LINES[I],STATE,2,I);
|
|
} /* end loop */
|
|
LNPOSN=0;
|
|
L30: LNPOSN=LNPOSN+1;
|
|
L32: if(LNPOSN > LNLENG) goto L40;
|
|
if(INLINE[LNPOSN] != 63) goto L30;
|
|
{long x = LNPOSN+1; PRMTYP=INLINE[x];}
|
|
/* 63 is a "%"; the next character determine the type of parameter: 1 (!) =
|
|
* suppress message completely, 29 (S) = NULL If PARM=1, else 'S' (optional
|
|
* plural ending), 33 (W) = word (two 30-bit values) with trailing spaces
|
|
* suppressed, 22 (L) or 31 (U) = word but map to lower/upper case, 13 (C) =
|
|
* word in lower case with first letter capitalised, 30 (T) = text ending
|
|
* with a word of -1, 65-73 (1-9) = number using that many characters,
|
|
* 12 (B) = variable number of blanks. */
|
|
if(PRMTYP == 1)return;
|
|
if(PRMTYP == 29) goto L320;
|
|
if(PRMTYP == 30) goto L340;
|
|
if(PRMTYP == 12) goto L360;
|
|
if(PRMTYP == 33 || PRMTYP == 22 || PRMTYP == 31 || PRMTYP == 13) goto
|
|
L380;
|
|
PRMTYP=PRMTYP-64;
|
|
if(PRMTYP < 1 || PRMTYP > 9) goto L30;
|
|
SHFTXT(LNPOSN+2,PRMTYP-2);
|
|
LNPOSN=LNPOSN+PRMTYP;
|
|
PARM=IABS(PARMS[NPARMS]);
|
|
NEG=0;
|
|
if(PARMS[NPARMS] < 0)NEG=9;
|
|
/* 390 */ for (I=1; I<=PRMTYP; I++) {
|
|
LNPOSN=LNPOSN-1;
|
|
INLINE[LNPOSN]=MOD(PARM,10)+64;
|
|
if(I == 1 || PARM != 0) goto L390;
|
|
INLINE[LNPOSN]=NEG;
|
|
NEG=0;
|
|
L390: PARM=PARM/10;
|
|
} /* end loop */
|
|
LNPOSN=LNPOSN+PRMTYP;
|
|
L395: NPARMS=NPARMS+1;
|
|
goto L32;
|
|
|
|
L320: SHFTXT(LNPOSN+2,-1);
|
|
INLINE[LNPOSN]=55;
|
|
if(PARMS[NPARMS] == 1)SHFTXT(LNPOSN+1,-1);
|
|
goto L395;
|
|
|
|
L340: SHFTXT(LNPOSN+2,-2);
|
|
STATE=0;
|
|
CASE=2;
|
|
L345: if(PARMS[NPARMS] < 0) goto L395;
|
|
{long x = NPARMS+1; if(PARMS[x] < 0)CASE=0;}
|
|
PUTTXT(PARMS[NPARMS],STATE,CASE,0);
|
|
NPARMS=NPARMS+1;
|
|
goto L345;
|
|
|
|
L360: PRMTYP=PARMS[NPARMS];
|
|
SHFTXT(LNPOSN+2,PRMTYP-2);
|
|
if(PRMTYP == 0) goto L395;
|
|
for (I=1; I<=PRMTYP; I++) {
|
|
INLINE[LNPOSN]=0;
|
|
LNPOSN=LNPOSN+1;
|
|
} /* end loop */
|
|
goto L395;
|
|
|
|
L380: SHFTXT(LNPOSN+2,-2);
|
|
STATE=0;
|
|
CASE= -1;
|
|
if(PRMTYP == 31)CASE=1;
|
|
if(PRMTYP == 33)CASE=0;
|
|
I=LNPOSN;
|
|
PUTTXT(PARMS[NPARMS],STATE,CASE,0);
|
|
{long x = NPARMS+1; PUTTXT(PARMS[x],STATE,CASE,0);}
|
|
if(PRMTYP == 13 && INLINE[I] >= 37 && INLINE[I] <=
|
|
62)INLINE[I]=INLINE[I]-26;
|
|
NPARMS=NPARMS+2;
|
|
goto L32;
|
|
|
|
L40: if(BLANK)TYPE0();
|
|
BLANK=false;
|
|
TYPE();
|
|
K=L+1;
|
|
if(LINES[K] >= 0) goto L10;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define SPEAK(N) fSPEAK(N)
|
|
#undef PSPEAK
|
|
void fPSPEAK(long MSG,long SKIP) {
|
|
long I, M;
|
|
|
|
/* Find the skip+1st message from msg and print it. MSG should be the index of
|
|
* the inventory message for object. (INVEN+N+1 message is PROP=N message). */
|
|
|
|
|
|
M=PTEXT[MSG];
|
|
if(SKIP < 0) goto L9;
|
|
for (I=0; I<=SKIP; I++) {
|
|
L1: M=IABS(LINES[M]);
|
|
if(LINES[M] >= 0) goto L1;
|
|
/*etc*/ ;
|
|
} /* end loop */
|
|
L9: SPEAK(M);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define PSPEAK(MSG,SKIP) fPSPEAK(MSG,SKIP)
|
|
#undef RSPEAK
|
|
void fRSPEAK(long I) {
|
|
;
|
|
|
|
/* Print the I-TH "random" message (section 6 of database). */
|
|
|
|
|
|
if(I != 0)SPEAK(RTEXT[I]);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define RSPEAK(I) fRSPEAK(I)
|
|
#undef SETPRM
|
|
void fSETPRM(long FIRST, long P1, long P2) {
|
|
;
|
|
|
|
/* Stores parameters into the PRMCOM parms array for use by speak. P1 and P2
|
|
* are stored into PARMS(FIRST) and PARMS(FIRST+1). */
|
|
|
|
|
|
if(FIRST >= 25)BUG(29);
|
|
PARMS[FIRST]=P1;
|
|
{long x = FIRST+1; PARMS[x]=P2;}
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define SETPRM(FIRST,P1,P2) fSETPRM(FIRST,P1,P2)
|
|
#undef GETIN
|
|
#define WORD1 (*wORD1)
|
|
#define WORD1X (*wORD1X)
|
|
#define WORD2 (*wORD2)
|
|
#define WORD2X (*wORD2X)
|
|
void fGETIN(long *wORD1, long *wORD1X, long *wORD2, long *wORD2X) {
|
|
long JUNK;
|
|
|
|
/* Get a command from the adventurer. snarf out the first word, pad it with
|
|
* blanks, and return it in WORD1. Chars 6 thru 10 are returned in WORD1X, in
|
|
* case we need to print out the whole word in an error message. Any number of
|
|
* blanks may follow the word. If a second word appears, it is returned in
|
|
* WORD2 (chars 6 thru 10 in WORD2X), else WORD2 is -1. */
|
|
|
|
|
|
L10: if(BLKLIN)TYPE0();
|
|
MAPLIN(false);
|
|
WORD1=GETTXT(true,true,true,0);
|
|
if(BLKLIN && WORD1 < 0) goto L10;
|
|
WORD1X=GETTXT(false,true,true,0);
|
|
L12: JUNK=GETTXT(false,true,true,0);
|
|
if(JUNK > 0) goto L12;
|
|
WORD2=GETTXT(true,true,true,0);
|
|
WORD2X=GETTXT(false,true,true,0);
|
|
L22: JUNK=GETTXT(false,true,true,0);
|
|
if(JUNK > 0) goto L22;
|
|
if(GETTXT(true,true,true,0) <= 0)return;
|
|
RSPEAK(53);
|
|
goto L10;
|
|
}
|
|
|
|
|
|
|
|
#undef WORD1
|
|
#undef WORD1X
|
|
#undef WORD2
|
|
#undef WORD2X
|
|
#define GETIN(WORD1,WORD1X,WORD2,WORD2X) fGETIN(&WORD1,&WORD1X,&WORD2,&WORD2X)
|
|
#undef YES
|
|
long fYES(long X, long Y, long Z) {
|
|
|
|
long YES, REPLY, JUNK1, JUNK2, JUNK3;
|
|
|
|
/* Print message X, wait for yes/no answer. If yes, print Y and return true;
|
|
* if no, print Z and return false. */
|
|
|
|
L1: RSPEAK(X);
|
|
GETIN(REPLY,JUNK1,JUNK2,JUNK3);
|
|
if(REPLY == MAKEWD(250519) || REPLY == MAKEWD(25)) goto L10;
|
|
if(REPLY == MAKEWD(1415) || REPLY == MAKEWD(14)) goto L20;
|
|
RSPEAK(185);
|
|
goto L1;
|
|
L10: YES=true;
|
|
RSPEAK(Y);
|
|
return(YES);
|
|
L20: YES=false;
|
|
RSPEAK(Z);
|
|
return(YES);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Line-parsing routines (GETNUM, GETTXT, MAKEWD, PUTTXT, SHFTXT, TYPE0)
|
|
*/
|
|
|
|
/* The routines on this page handle all the stuff that would normally be
|
|
* taken care of by format statements. We do it this way instead so that
|
|
* we can handle textual data in a machine independent fashion. All the
|
|
* machine dependent i/o stuff is on the following page. See that page
|
|
* for a description of MAPCOM's inline array. */
|
|
|
|
#define YES(X,Y,Z) fYES(X,Y,Z)
|
|
#undef GETNUM
|
|
long fGETNUM(long K) {
|
|
long DIGIT, GETNUM, SIGN;
|
|
|
|
/* Obtain the next integer from an input line. If K>0, we first read a
|
|
* new input line from a file; if K<0, we read a line from the keyboard;
|
|
* if K=0 we use a line that has already been read (and perhaps partially
|
|
* scanned). If we're at the end of the line or encounter an illegal
|
|
* character (not a digit, hyphen, or blank), we return 0. */
|
|
|
|
|
|
if(K != 0)MAPLIN(K > 0);
|
|
GETNUM=0;
|
|
L10: if(LNPOSN > LNLENG)return(GETNUM);
|
|
if(INLINE[LNPOSN] != 0) goto L20;
|
|
LNPOSN=LNPOSN+1;
|
|
goto L10;
|
|
|
|
L20: SIGN=1;
|
|
if(INLINE[LNPOSN] != 9) goto L32;
|
|
SIGN= -1;
|
|
L30: LNPOSN=LNPOSN+1;
|
|
L32: if(LNPOSN > LNLENG || INLINE[LNPOSN] == 0) goto L42;
|
|
DIGIT=INLINE[LNPOSN]-64;
|
|
if(DIGIT < 0 || DIGIT > 9) goto L40;
|
|
GETNUM=GETNUM*10+DIGIT;
|
|
goto L30;
|
|
|
|
L40: GETNUM=0;
|
|
L42: GETNUM=GETNUM*SIGN;
|
|
LNPOSN=LNPOSN+1;
|
|
return(GETNUM);
|
|
}
|
|
|
|
|
|
|
|
#define GETNUM(K) fGETNUM(K)
|
|
#undef GETTXT
|
|
long fGETTXT(long SKIP,long ONEWRD, long UPPER, long HASH) {
|
|
long CHAR, GETTXT, I; static long SPLITTING = -1;
|
|
|
|
/* Take characters from an input line and pack them into 30-bit words.
|
|
* Skip says to skip leading blanks. ONEWRD says stop if we come to a
|
|
* blank. UPPER says to map all letters to uppercase. HASH may be used
|
|
* as a parameter for encrypting the text if desired; however, a hash of 0
|
|
* should result in unmodified bytes being packed. If we reach the
|
|
* end of the line, the word is filled up with blanks (which encode as 0's).
|
|
* If we're already at end of line when GETTXT is called, we return -1. */
|
|
|
|
if(LNPOSN != SPLITTING)SPLITTING = -1;
|
|
GETTXT= -1;
|
|
L10: if(LNPOSN > LNLENG)return(GETTXT);
|
|
if((!SKIP) || INLINE[LNPOSN] != 0) goto L11;
|
|
LNPOSN=LNPOSN+1;
|
|
goto L10;
|
|
|
|
L11: GETTXT=0;
|
|
/* 15 */ for (I=1; I<=5; I++) {
|
|
GETTXT=GETTXT*64;
|
|
if(LNPOSN > LNLENG || (ONEWRD && INLINE[LNPOSN] == 0)) goto L15;
|
|
CHAR=INLINE[LNPOSN];
|
|
if(CHAR >= 63) goto L12;
|
|
SPLITTING = -1;
|
|
if(UPPER && CHAR >= 37)CHAR=CHAR-26;
|
|
GETTXT=GETTXT+CHAR;
|
|
goto L14;
|
|
|
|
L12: if(SPLITTING == LNPOSN) goto L13;
|
|
GETTXT=GETTXT+63;
|
|
SPLITTING = LNPOSN;
|
|
goto L15;
|
|
|
|
L13: GETTXT=GETTXT+CHAR-63;
|
|
SPLITTING = -1;
|
|
L14: LNPOSN=LNPOSN+1;
|
|
L15: /*etc*/ ;
|
|
} /* end loop */
|
|
|
|
if(HASH)GETTXT=GETTXT+MOD(HASH*13579L+5432L,97531L)*12345L+HASH;
|
|
return(GETTXT);
|
|
}
|
|
|
|
|
|
|
|
#define GETTXT(SKIP,ONEWRD,UPPER,HASH) fGETTXT(SKIP,ONEWRD,UPPER,HASH)
|
|
#undef MAKEWD
|
|
long fMAKEWD(long LETTRS) {
|
|
long I, L, MAKEWD;
|
|
|
|
/* Combine five uppercase letters (represented by pairs of decimal digits
|
|
* in lettrs) to form a 30-bit value matching the one that GETTXT would
|
|
* return given those characters plus trailing blanks and HASH=0. Caution:
|
|
* lettrs will overflow 31 bits if 5-letter word starts with V-Z. As a
|
|
* kludgey workaround, you can increment a letter by 5 by adding 50 to
|
|
* the next pair of digits. */
|
|
|
|
|
|
MAKEWD=0;
|
|
I=1;
|
|
L=LETTRS;
|
|
L10: MAKEWD=MAKEWD+I*(MOD(L,50)+10);
|
|
I=I*64;
|
|
if(MOD(L,100) > 50)MAKEWD=MAKEWD+I*5;
|
|
L=L/100;
|
|
if(L != 0) goto L10;
|
|
I=64L*64L*64L*64L*64L/I;
|
|
MAKEWD=MAKEWD*I;
|
|
return(MAKEWD);
|
|
}
|
|
|
|
|
|
|
|
#define MAKEWD(LETTRS) fMAKEWD(LETTRS)
|
|
#undef PUTTXT
|
|
#define STATE (*sTATE)
|
|
void fPUTTXT(long WORD, long *sTATE, long CASE, long HASH) {
|
|
long ALPH1, ALPH2, BYTE, DIV, I, W;
|
|
|
|
/* Unpack the 30-bit value in word to obtain up to 5 integer-encoded chars,
|
|
* and store them in inline starting at LNPOSN. If LNLENG>=LNPOSN, shift
|
|
* existing characters to the right to make room. HASH must be the same
|
|
* as it was when gettxt created the 30-bit word. STATE will be zero when
|
|
* puttxt is called with the first of a sequence of words, but is thereafter
|
|
* unchanged by the caller, so PUTTXT can use it to maintain state across
|
|
* calls. LNPOSN and LNLENG are incremented by the number of chars stored.
|
|
* If CASE=1, all letters are made uppercase; if -1, lowercase; if 0, as is.
|
|
* any other value for case is the same as 0 but also causes trailing blanks
|
|
* to be included (in anticipation of subsequent additional text). */
|
|
|
|
|
|
ALPH1=13*CASE+24;
|
|
ALPH2=26*IABS(CASE)+ALPH1;
|
|
if(IABS(CASE) > 1)ALPH1=ALPH2;
|
|
/* ALPH1&2 DEFINE RANGE OF WRONG-CASE CHARS, 11-36 OR 37-62 OR EMPTY. */
|
|
DIV=64L*64L*64L*64L;
|
|
W=WORD;
|
|
if(HASH)W=W-MOD(HASH*13579L+5432L,97531L)*12345L-HASH;
|
|
/* 18 */ for (I=1; I<=5; I++) {
|
|
if(W <= 0 && STATE == 0 && IABS(CASE) <= 1)return;
|
|
BYTE=W/DIV;
|
|
if(STATE != 0 || BYTE != 63) goto L12;
|
|
STATE=63;
|
|
goto L18;
|
|
|
|
L12: SHFTXT(LNPOSN,1);
|
|
STATE=STATE+BYTE;
|
|
if(STATE < ALPH2 && STATE >= ALPH1)STATE=STATE-26*CASE;
|
|
INLINE[LNPOSN]=STATE;
|
|
LNPOSN=LNPOSN+1;
|
|
STATE=0;
|
|
L18: W=(W-BYTE*DIV)*64;
|
|
} /* end loop */
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#undef STATE
|
|
#define PUTTXT(WORD,STATE,CASE,HASH) fPUTTXT(WORD,&STATE,CASE,HASH)
|
|
#undef SHFTXT
|
|
void fSHFTXT(long FROM, long DELTA) {
|
|
long I, II, JJ;
|
|
|
|
/* Move INLINE(N) to INLINE(N+DELTA) for N=FROM,LNLENG. Delta can be
|
|
* negative. LNLENG is updated; LNPOSN is not changed. */
|
|
|
|
|
|
if(LNLENG < FROM || DELTA == 0) goto L2;
|
|
for (I=FROM; I<=LNLENG; I++) {
|
|
II=I;
|
|
if(DELTA > 0)II=FROM+LNLENG-I;
|
|
JJ=II+DELTA;
|
|
INLINE[JJ]=INLINE[II];
|
|
} /* end loop */
|
|
L2: LNLENG=LNLENG+DELTA;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define SHFTXT(FROM,DELTA) fSHFTXT(FROM,DELTA)
|
|
#undef TYPE0
|
|
void fTYPE0() {
|
|
long TEMP;
|
|
|
|
/* Type a blank line. This procedure is provided as a convenience for callers
|
|
* who otherwise have no use for MAPCOM. */
|
|
|
|
|
|
TEMP=LNLENG;
|
|
LNLENG=0;
|
|
TYPE();
|
|
LNLENG=TEMP;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define TYPE0() fTYPE0()
|
|
|
|
|
|
/* Suspend/resume I/O routines (SAVWDS, SAVARR, SAVWRD) */
|
|
|
|
#undef SAVWDS
|
|
void fSAVWDS(long *W1, long *W2, long *W3, long *W4, long *W5, long *W6, long *W7) {
|
|
|
|
/* Write or read 7 variables. See SAVWRD. */
|
|
|
|
|
|
SAVWRD(0,(*W1));
|
|
SAVWRD(0,(*W2));
|
|
SAVWRD(0,(*W3));
|
|
SAVWRD(0,(*W4));
|
|
SAVWRD(0,(*W5));
|
|
SAVWRD(0,(*W6));
|
|
SAVWRD(0,(*W7));
|
|
return;
|
|
}
|
|
|
|
|
|
#define SAVWDS(W1,W2,W3,W4,W5,W6,W7) fSAVWDS(&W1,&W2,&W3,&W4,&W5,&W6,&W7)
|
|
#undef SAVARR
|
|
void fSAVARR(long ARR[], long N) {
|
|
long I;
|
|
|
|
/* Write or read an array of N words. See SAVWRD. */
|
|
|
|
|
|
for (I=1; I<=N; I++) {
|
|
SAVWRD(0,ARR[I]);
|
|
} /* end loop */
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define SAVARR(ARR,N) fSAVARR(ARR,N)
|
|
#undef SAVWRD
|
|
#define WORD (*wORD)
|
|
void fSAVWRD(long OP, long *wORD) {
|
|
static long BUF[250], CKSUM = 0, H1, HASH = 0, N = 0, STATE = 0;
|
|
|
|
/* If OP<0, start writing a file, using word to initialise encryption; save
|
|
* word in the file. If OP>0, start reading a file; read the file to find
|
|
* the value with which to decrypt the rest. In either case, if a file is
|
|
* already open, finish writing/reading it and don't start a new one. If OP=0,
|
|
* read/write a single word. Words are buffered in case that makes for more
|
|
* efficient disk use. We also compute a simple checksum to catch elementary
|
|
* poking within the saved file. When we finish reading/writing the file,
|
|
* we store zero into WORD if there's no checksum error, else nonzero. */
|
|
|
|
|
|
if(OP != 0){long ifvar; ifvar=(STATE); switch (ifvar<0? -1 : ifvar>0? 1 :
|
|
0) { case -1: goto L30; case 0: goto L10; case 1: goto L30; }}
|
|
if(STATE == 0)return;
|
|
if(N == 250)SAVEIO(1,STATE > 0,BUF);
|
|
N=MOD(N,250)+1;
|
|
H1=MOD(HASH*1093L+221573L,1048576L);
|
|
HASH=MOD(H1*1093L+221573L,1048576L);
|
|
H1=MOD(H1,1234)*765432+MOD(HASH,123);
|
|
N--;
|
|
if(STATE > 0)WORD=BUF[N]+H1;
|
|
BUF[N]=WORD-H1;
|
|
N++;
|
|
CKSUM=MOD(CKSUM*13+WORD,1000000000L);
|
|
return;
|
|
|
|
L10: STATE=OP;
|
|
SAVEIO(0,STATE > 0,BUF);
|
|
N=1;
|
|
if(STATE > 0) goto L15;
|
|
HASH=MOD(WORD,1048576L);
|
|
BUF[0]=1234L*5678L-HASH;
|
|
L13: CKSUM=BUF[0];
|
|
return;
|
|
|
|
L15: SAVEIO(1,true,BUF);
|
|
HASH=MOD(1234L*5678L-BUF[0],1048576L);
|
|
goto L13;
|
|
|
|
L30: if(N == 250)SAVEIO(1,STATE > 0,BUF);
|
|
N=MOD(N,250)+1;
|
|
if(STATE > 0) goto L32;
|
|
N--; BUF[N]=CKSUM; N++;
|
|
SAVEIO(1,false,BUF);
|
|
L32: N--; WORD=BUF[N]-CKSUM; N++;
|
|
SAVEIO(-1,STATE > 0,BUF);
|
|
STATE=0;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Data struc. routines (VOCAB, DSTROY, JUGGLE, MOVE, PUT, CARRY, DROP, ATDWRF)
|
|
*/
|
|
|
|
#undef WORD
|
|
#define SAVWRD(OP,WORD) fSAVWRD(OP,&WORD)
|
|
#undef VOCAB
|
|
long fVOCAB(long ID, long INIT) {
|
|
long HASH, I, VOCAB;
|
|
|
|
/* Look up ID in the vocabulary (ATAB) and return its "definition" (KTAB), or
|
|
* -1 if not found. If INIT is positive, this is an initialisation call setting
|
|
* up a keyword variable, and not finding it constitutes a bug. It also means
|
|
* that only KTAB values which taken over 1000 equal INIT may be considered.
|
|
* (Thus "STEPS", which is a motion verb as well as an object, may be located
|
|
* as an object.) And it also means the KTAB value is taken modulo 1000. */
|
|
|
|
HASH=10000;
|
|
/* 1 */ for (I=1; I<=TABSIZ; I++) {
|
|
if(KTAB[I] == -1) goto L2;
|
|
HASH=HASH+7;
|
|
if(INIT >= 0 && KTAB[I]/1000 != INIT) goto L1;
|
|
if(ATAB[I] == ID+HASH*HASH) goto L3;
|
|
L1: /*etc*/ ;
|
|
} /* end loop */
|
|
BUG(21);
|
|
|
|
L2: VOCAB= -1;
|
|
if(INIT < 0)return(VOCAB);
|
|
BUG(5);
|
|
|
|
L3: VOCAB=KTAB[I];
|
|
if(INIT >= 0)VOCAB=MOD(VOCAB,1000);
|
|
return(VOCAB);
|
|
}
|
|
|
|
|
|
|
|
#define VOCAB(ID,INIT) fVOCAB(ID,INIT)
|
|
#undef DSTROY
|
|
void fDSTROY(long OBJECT) {
|
|
;
|
|
|
|
/* Permanently eliminate "OBJECT" by moving to a non-existent location. */
|
|
|
|
|
|
MOVE(OBJECT,0);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define DSTROY(OBJECT) fDSTROY(OBJECT)
|
|
#undef JUGGLE
|
|
void fJUGGLE(long OBJECT) {
|
|
long I, J;
|
|
|
|
/* Juggle an object by picking it up and putting it down again, the purpose
|
|
* being to get the object to the front of the chain of things at its loc. */
|
|
|
|
|
|
I=PLACE[OBJECT];
|
|
J=FIXED[OBJECT];
|
|
MOVE(OBJECT,I);
|
|
MOVE(OBJECT+100,J);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define JUGGLE(OBJECT) fJUGGLE(OBJECT)
|
|
#undef MOVE
|
|
void fMOVE(long OBJECT, long WHERE) {
|
|
long FROM;
|
|
|
|
/* Place any object anywhere by picking it up and dropping it. May already be
|
|
* toting, in which case the carry is a no-op. Mustn't pick up objects which
|
|
* are not at any loc, since carry wants to remove objects from ATLOC chains. */
|
|
|
|
|
|
if(OBJECT > 100) goto L1;
|
|
FROM=PLACE[OBJECT];
|
|
goto L2;
|
|
L1: {long x = OBJECT-100; FROM=FIXED[x];}
|
|
L2: if(FROM > 0 && FROM <= 300)CARRY(OBJECT,FROM);
|
|
DROP(OBJECT,WHERE);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define MOVE(OBJECT,WHERE) fMOVE(OBJECT,WHERE)
|
|
#undef PUT
|
|
long fPUT(long OBJECT, long WHERE, long PVAL) {
|
|
long PUT;
|
|
|
|
/* PUT is the same as MOVE, except it returns a value used to set up the
|
|
* negated PROP values for the repository objects. */
|
|
|
|
|
|
MOVE(OBJECT,WHERE);
|
|
PUT=(-1)-PVAL;
|
|
return(PUT);
|
|
}
|
|
|
|
|
|
|
|
#define PUT(OBJECT,WHERE,PVAL) fPUT(OBJECT,WHERE,PVAL)
|
|
#undef CARRY
|
|
void fCARRY(long OBJECT, long WHERE) {
|
|
long TEMP;
|
|
|
|
/* Start toting an object, removing it from the list of things at its former
|
|
* location. Incr holdng unless it was already being toted. If OBJECT>100
|
|
* (moving "fixed" second loc), don't change PLACE or HOLDNG. */
|
|
|
|
|
|
if(OBJECT > 100) goto L5;
|
|
if(PLACE[OBJECT] == -1)return;
|
|
PLACE[OBJECT]= -1;
|
|
HOLDNG=HOLDNG+1;
|
|
L5: if(ATLOC[WHERE] != OBJECT) goto L6;
|
|
ATLOC[WHERE]=LINK[OBJECT];
|
|
return;
|
|
L6: TEMP=ATLOC[WHERE];
|
|
L7: if(LINK[TEMP] == OBJECT) goto L8;
|
|
TEMP=LINK[TEMP];
|
|
goto L7;
|
|
L8: LINK[TEMP]=LINK[OBJECT];
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define CARRY(OBJECT,WHERE) fCARRY(OBJECT,WHERE)
|
|
#undef DROP
|
|
void fDROP(long OBJECT, long WHERE) {
|
|
;
|
|
|
|
/* Place an object at a given loc, prefixing it onto the ATLOC list. Decr
|
|
* HOLDNG if the object was being toted. */
|
|
|
|
|
|
if(OBJECT > 100) goto L1;
|
|
if(PLACE[OBJECT] == -1)HOLDNG=HOLDNG-1;
|
|
PLACE[OBJECT]=WHERE;
|
|
goto L2;
|
|
L1: {long x = OBJECT-100; FIXED[x]=WHERE;}
|
|
L2: if(WHERE <= 0)return;
|
|
LINK[OBJECT]=ATLOC[WHERE];
|
|
ATLOC[WHERE]=OBJECT;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define DROP(OBJECT,WHERE) fDROP(OBJECT,WHERE)
|
|
#undef ATDWRF
|
|
long fATDWRF(long WHERE) {
|
|
long ATDWRF, I;
|
|
|
|
/* Return the index of first dwarf at the given location, zero if no dwarf is
|
|
* there (or if dwarves not active yet), -1 if all dwarves are dead. Ignore
|
|
* the pirate (6th dwarf). */
|
|
|
|
|
|
ATDWRF=0;
|
|
if(DFLAG < 2)return(ATDWRF);
|
|
ATDWRF= -1;
|
|
for (I=1; I<=5; I++) {
|
|
if(DLOC[I] == WHERE) goto L2;
|
|
if(DLOC[I] != 0)ATDWRF=0;
|
|
} /* end loop */
|
|
return(ATDWRF);
|
|
|
|
L2: ATDWRF=I;
|
|
return(ATDWRF);
|
|
}
|
|
|
|
|
|
|
|
|
|
#define ATDWRF(WHERE) fATDWRF(WHERE)
|
|
|
|
|
|
|
|
/* Utility routines (SETBIT, TSTBIT, RAN, RNDVOC, BUG) */
|
|
|
|
#undef SETBIT
|
|
long fSETBIT(long BIT) {
|
|
long I, SETBIT;
|
|
|
|
/* Returns 2**bit for use in constructing bit-masks. */
|
|
|
|
|
|
SETBIT=1;
|
|
if(BIT <= 0)return(SETBIT);
|
|
for (I=1; I<=BIT; I++) {
|
|
SETBIT=SETBIT+SETBIT;
|
|
} /* end loop */
|
|
return(SETBIT);
|
|
}
|
|
|
|
|
|
|
|
#define SETBIT(BIT) fSETBIT(BIT)
|
|
#undef TSTBIT
|
|
long fTSTBIT(long MASK, long BIT) {
|
|
long TSTBIT;
|
|
|
|
/* Returns true if the specified bit is set in the mask. */
|
|
|
|
|
|
TSTBIT=MOD(MASK/SETBIT(BIT),2) != 0;
|
|
return(TSTBIT);
|
|
}
|
|
|
|
|
|
|
|
#define TSTBIT(MASK,BIT) fTSTBIT(MASK,BIT)
|
|
#undef RAN
|
|
long fRAN(long RANGE) {
|
|
static long D, R = 0, RAN, T;
|
|
|
|
/* Since the ran function in LIB40 seems to be a real lose, we'll use one of
|
|
* our own. It's been run through many of the tests in Knuth vol. 2 and
|
|
* seems to be quite reliable. RAN returns a value uniformly selected
|
|
* between 0 and range-1. */
|
|
|
|
|
|
D=1;
|
|
if(R != 0 && RANGE >= 0) goto L1;
|
|
DATIME(D,T);
|
|
R=MOD(T+5,1048576L);
|
|
D=1000+MOD(D,1000);
|
|
L1: for (T=1; T<=D; T++) {
|
|
R=MOD(R*1093L+221587L,1048576L);
|
|
} /* end loop */
|
|
RAN=(RANGE*R)/1048576;
|
|
return(RAN);
|
|
}
|
|
|
|
|
|
|
|
#define RAN(RANGE) fRAN(RANGE)
|
|
#undef RNDVOC
|
|
long fRNDVOC(long CHAR, long FORCE) {
|
|
long DIV, I, J, RNDVOC;
|
|
|
|
/* Searches the vocabulary for a word whose second character is char, and
|
|
* changes that word such that each of the other four characters is a
|
|
* random letter. If force is non-zero, it is used as the new word.
|
|
* Returns the new word. */
|
|
|
|
|
|
RNDVOC=FORCE;
|
|
if(RNDVOC != 0) goto L3;
|
|
for (I=1; I<=5; I++) {
|
|
J=11+RAN(26);
|
|
if(I == 2)J=CHAR;
|
|
RNDVOC=RNDVOC*64+J;
|
|
} /* end loop */
|
|
L3: J=10000;
|
|
DIV=64L*64L*64L;
|
|
for (I=1; I<=TABSIZ; I++) {
|
|
J=J+7;
|
|
if(MOD((ATAB[I]-J*J)/DIV,64L) == CHAR) goto L8;
|
|
/*etc*/ ;
|
|
} /* end loop */
|
|
BUG(5);
|
|
|
|
L8: ATAB[I]=RNDVOC+J*J;
|
|
return(RNDVOC);
|
|
}
|
|
|
|
|
|
|
|
#define RNDVOC(CHAR,FORCE) fRNDVOC(CHAR,FORCE)
|
|
#undef BUG
|
|
void fBUG(long NUM) {
|
|
|
|
/* The following conditions are currently considered fatal bugs. Numbers < 20
|
|
* are detected while reading the database; the others occur at "run time".
|
|
* 0 Message line > 70 characters
|
|
* 1 Null line in message
|
|
* 2 Too many words of messages
|
|
* 3 Too many travel options
|
|
* 4 Too many vocabulary words
|
|
* 5 Required vocabulary word not found
|
|
* 6 Too many RTEXT messages
|
|
* 7 Too many hints
|
|
* 8 Location has cond bit being set twice
|
|
* 9 Invalid section number in database
|
|
* 10 Too many locations
|
|
* 11 Too many class or turn messages
|
|
* 20 Special travel (500>L>300) exceeds goto list
|
|
* 21 Ran off end of vocabulary table
|
|
* 22 Vocabulary type (N/1000) not between 0 and 3
|
|
* 23 Intransitive action verb exceeds goto list
|
|
* 24 Transitive action verb exceeds goto list
|
|
* 25 Conditional travel entry with no alternative
|
|
* 26 Location has no travel entries
|
|
* 27 Hint number exceeds goto list
|
|
* 28 Invalid month returned by date function
|
|
* 29 Too many parameters given to SETPRM */
|
|
|
|
printf("Fatal error %ld. See source code for interpretation.\n",
|
|
NUM);
|
|
exit(0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Machine dependent routines (MAPLIN, TYPE, MPINIT, SAVEIO) */
|
|
|
|
#define BUG(NUM) fBUG(NUM)
|
|
#undef MAPLIN
|
|
void fMAPLIN(long FIL) {
|
|
long I, VAL; static FILE *OPENED = NULL;
|
|
|
|
/* Read a line of input, either from a file (if FIL=true) or from the
|
|
* keyboard, translate the chars to integers in the range 0-126 and store
|
|
* them in the common array "INLINE". Integer values are as follows:
|
|
* 0 = space [ASCII CODE 40 octal, 32 decimal]
|
|
* 1-2 = !" [ASCII 41-42 octal, 33-34 decimal]
|
|
* 3-10 = '()*+,-. [ASCII 47-56 octal, 39-46 decimal]
|
|
* 11-36 = upper-case letters
|
|
* 37-62 = lower-case letters
|
|
* 63 = percent (%) [ASCII 45 octal, 37 decimal]
|
|
* 64-73 = digits, 0 through 9
|
|
* Remaining characters can be translated any way that is convenient;
|
|
* The "TYPE" routine below is used to map them back to characters when
|
|
* necessary. The above mappings are required so that certain special
|
|
* characters are known to fit in 6 bits and/or can be easily spotted.
|
|
* Array elements beyond the end of the line should be filled with 0,
|
|
* and LNLENG should be set to the index of the last character.
|
|
*
|
|
* If the data file uses a character other than space (e.g., tab) to
|
|
* separate numbers, that character should also translate to 0.
|
|
*
|
|
* This procedure may use the map1,map2 arrays to maintain static data for
|
|
* the mapping. MAP2(1) is set to 0 when the program starts
|
|
* and is not changed thereafter unless the routines on this page choose
|
|
* to do so.
|
|
*
|
|
* Note that MAPLIN is expected to open the file the first time it is
|
|
* asked to read a line from it. that is, there is no other place where
|
|
* the data file is opened. */
|
|
|
|
|
|
if(MAP2[1] == 0)MPINIT();
|
|
|
|
if(FIL) goto L15;
|
|
IGNORE(fgets(INLINE+1, sizeof(INLINE)-1, stdin));
|
|
if(feof(stdin)) score(1);
|
|
goto L20;
|
|
|
|
L15: if(!OPENED){
|
|
OPENED=fopen("adventure.text","r" /* NOT binary */);
|
|
if(!OPENED){printf("Can't read adventure.text!\n"); exit(0);}
|
|
}
|
|
IGNORE(fgets(INLINE+1,sizeof(INLINE)-1,OPENED));
|
|
|
|
L20: LNLENG=0;
|
|
for (I=1; I<=sizeof(INLINE) && INLINE[I]!=0; I++) {
|
|
VAL=INLINE[I]+1;
|
|
INLINE[I]=MAP1[VAL];
|
|
if(INLINE[I] != 0)LNLENG=I;
|
|
} /* end loop */
|
|
LNPOSN=1;
|
|
if(FIL && LNLENG == 0) goto L15;
|
|
/* Above is to get around an F40 compiler bug wherein it reads a blank
|
|
* line whenever a crlf is broken across a record boundary. */
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define MAPLIN(FIL) fMAPLIN(FIL)
|
|
#undef TYPE
|
|
void fTYPE(void) {
|
|
long I, VAL;
|
|
|
|
/* Type the first "LNLENG" characters stored in inline, mapping them
|
|
* from integers to text per the rules described above. INLINE(I),
|
|
* I=1,LNLENG may be changed by this routine. */
|
|
|
|
|
|
if(LNLENG != 0) goto L10;
|
|
printf("\n");
|
|
return;
|
|
|
|
L10: if(MAP2[1] == 0)MPINIT();
|
|
for (I=1; I<=LNLENG; I++) {
|
|
VAL=INLINE[I];
|
|
{long x = VAL+1; INLINE[I]=MAP2[x];}
|
|
} /* end loop */
|
|
{long x = LNLENG+1; INLINE[x]=0;}
|
|
printf("%s\n",INLINE+1);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define TYPE() fTYPE()
|
|
#undef MPINIT
|
|
void fMPINIT(void) {
|
|
long FIRST, I, J, LAST, VAL;
|
|
static long RUNS[7][2] = {32,34, 39,46, 65,90, 97,122, 37,37, 48,57, 0,126};
|
|
|
|
|
|
for (I=1; I<=128; I++) {
|
|
MAP1[I]= -1;
|
|
} /* end loop */
|
|
VAL=0;
|
|
for (I=0; I<7; I++) {
|
|
FIRST=RUNS[I][0];
|
|
LAST=RUNS[I][1];
|
|
/* 22 */ for (J=FIRST; J<=LAST; J++) {
|
|
J++; if(MAP1[J] >= 0) goto L22;
|
|
MAP1[J]=VAL;
|
|
VAL=VAL+1;
|
|
L22: J--;
|
|
} /* end loop */
|
|
/*etc*/ ;
|
|
} /* end loop */
|
|
MAP1[128]=MAP1[10];
|
|
/* For this version, tab (9) maps to space (32), so del (127) uses tab's value */
|
|
MAP1[10]=MAP1[33];
|
|
MAP1[11]=MAP1[33];
|
|
|
|
for (I=0; I<=126; I++) {
|
|
I++; VAL=MAP1[I]+1; I--;
|
|
MAP2[VAL]=I*('B'-'A');
|
|
if(I >= 64)MAP2[VAL]=(I-64)*('B'-'A')+'@';
|
|
} /* end loop */
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
#define MPINIT() fMPINIT()
|
|
#undef SAVEIO
|
|
void fSAVEIO(long OP, long IN, long ARR[]) {
|
|
static FILE *F; char NAME[50];
|
|
|
|
/* If OP=0, ask for a file name and open a file. (If IN=true, the file is for
|
|
* input, else output.) If OP>0, read/write ARR from/into the previously-opened
|
|
* file. (ARR is a 250-integer array.) If OP<0, finish reading/writing the
|
|
* file. (Finishing writing can be a no-op if a "stop" statement does it
|
|
* automatically. Finishing reading can be a no-op as long as a subsequent
|
|
* SAVEIO(0,false,X) will still work.) If you can catch errors (e.g., no such
|
|
* file) and try again, great. DEC F40 can't. */
|
|
|
|
|
|
{long ifvar; ifvar=(OP); switch (ifvar<0? -1 : ifvar>0? 1 : 0) { case -1:
|
|
goto L10; case 0: goto L20; case 1: goto L30; }}
|
|
|
|
L10: fclose(F);
|
|
return;
|
|
|
|
L20: printf("\nFile name: ");
|
|
IGNORE(fgets(NAME, sizeof(NAME), stdin));
|
|
F=fopen(NAME,(IN ? READ_MODE : WRITE_MODE));
|
|
if(F == NULL) {printf("Can't open file, try again.\n"); goto L20;}
|
|
return;
|
|
|
|
L30: if(IN)IGNORE(fread(ARR,sizeof(long),250,F));
|
|
if(!IN)fwrite(ARR,sizeof(long),250,F);
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
long fIABS(N)long N; {return(N<0? -N : N);}
|
|
long fMOD(N,M)long N, M; {return(N%M);}
|