708 lines
20 KiB
C
708 lines
20 KiB
C
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <sys/time.h>
|
|
#include <ctype.h>
|
|
|
|
#include "advent.h"
|
|
#include "database.h"
|
|
#include "linenoise/linenoise.h"
|
|
#include "newdb.h"
|
|
|
|
void* xmalloc(size_t size)
|
|
{
|
|
void* ptr = malloc(size);
|
|
if (ptr == NULL) {
|
|
fprintf(stderr, "Out of memory!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return (ptr);
|
|
}
|
|
|
|
void packed_to_token(long packed, char token[6])
|
|
{
|
|
// Unpack and map back to ASCII.
|
|
for (int i = 0; i < 5; ++i) {
|
|
char advent = (packed >> i * 6) & 63;
|
|
token[4 - i] = advent_to_ascii[(int) advent];
|
|
}
|
|
|
|
// Ensure the last character is \0.
|
|
token[5] = '\0';
|
|
|
|
// Replace trailing whitespace with \0.
|
|
for (int i = 4; i >= 0; --i) {
|
|
if (token[i] == ' ' || token[i] == '\t')
|
|
token[i] = '\0';
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
void token_to_packed(char token[6], long* packed)
|
|
{
|
|
*packed = 0;
|
|
for (size_t i = 0; i < 5; ++i)
|
|
{
|
|
if (token[4 - i] == '\0')
|
|
continue;
|
|
char mapped = ascii_to_advent[(int) token[4 - i]];
|
|
*packed |= (mapped << (6 * i));
|
|
}
|
|
}
|
|
|
|
/* Hide the fact that wods are corrently packed longs */
|
|
|
|
bool wordeq(token_t a, token_t b)
|
|
{
|
|
return a == b;
|
|
}
|
|
|
|
bool wordempty(token_t a)
|
|
{
|
|
return a == 0;
|
|
}
|
|
|
|
void wordclear(token_t *v)
|
|
{
|
|
*v = 0;
|
|
}
|
|
|
|
/* I/O routines (speak, pspeak, rspeak, GETIN, YES) */
|
|
|
|
void vspeak(const char* msg, va_list ap)
|
|
{
|
|
// Do nothing if we got a null pointer.
|
|
if (msg == NULL)
|
|
return;
|
|
|
|
// Do nothing if we got an empty string.
|
|
if (strlen(msg) == 0)
|
|
return;
|
|
|
|
// Print a newline if the global game.blklin says to.
|
|
if (game.blklin == true)
|
|
printf("\n");
|
|
|
|
int msglen = strlen(msg);
|
|
|
|
// Rendered string
|
|
ssize_t size = 2000; /* msglen > 50 ? msglen*2 : 100; */
|
|
char* rendered = xmalloc(size);
|
|
char* renderp = rendered;
|
|
|
|
// Handle format specifiers (including the custom %C, %L, %S) by adjusting the parameter accordingly, and replacing the specifier with %s.
|
|
long previous_arg = 0;
|
|
for (int i = 0; i < msglen; i++) {
|
|
if (msg[i] != '%') {
|
|
*renderp++ = msg[i];
|
|
size--;
|
|
} else {
|
|
long arg = va_arg(ap, long);
|
|
if (arg == -1)
|
|
arg = 0;
|
|
i++;
|
|
// Integer specifier. In order to accommodate the fact that PARMS can have both legitimate integers *and* packed tokens, stringify everything. Future work may eliminate the need for this.
|
|
if (msg[i] == 'd') {
|
|
int ret = snprintf(renderp, size, "%ld", arg);
|
|
if (ret < size) {
|
|
renderp += ret;
|
|
size -= ret;
|
|
}
|
|
}
|
|
|
|
// Unmodified string specifier.
|
|
if (msg[i] == 's') {
|
|
packed_to_token(arg, renderp); /* unpack directly to destination */
|
|
size_t len = strlen(renderp);
|
|
renderp += len;
|
|
size -= len;
|
|
}
|
|
|
|
// Singular/plural specifier.
|
|
if (msg[i] == 'S') {
|
|
if (previous_arg > 1) { // look at the *previous* parameter (which by necessity must be numeric)
|
|
*renderp++ = 's';
|
|
size--;
|
|
}
|
|
}
|
|
|
|
// All-lowercase specifier.
|
|
if (msg[i] == 'L' || msg[i] == 'C') {
|
|
packed_to_token(arg, renderp); /* unpack directly to destination */
|
|
int len = strlen(renderp);
|
|
for (int j = 0; j < len; ++j) {
|
|
renderp[j] = tolower(renderp[j]);
|
|
}
|
|
if (msg[i] == 'C') // First char uppercase, rest lowercase.
|
|
renderp[0] = toupper(renderp[0]);
|
|
renderp += len;
|
|
size -= len;
|
|
}
|
|
|
|
previous_arg = arg;
|
|
}
|
|
}
|
|
*renderp = 0;
|
|
|
|
// Print the message.
|
|
printf("%s\n", rendered);
|
|
|
|
free(rendered);
|
|
}
|
|
|
|
void speak(const char* msg, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, msg);
|
|
vspeak(msg, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
void pspeak(vocab_t msg, enum speaktype mode, int skip, ...)
|
|
/* Find the skip+1st message from msg and print it. Modes are:
|
|
* feel = for inventory, what you can touch
|
|
* look = the long description for the state the object is in
|
|
* listen = the sound for the state the object is in
|
|
* study = text on the object. */
|
|
{
|
|
va_list ap;
|
|
va_start(ap, skip);
|
|
switch (mode) {
|
|
case touch:
|
|
vspeak(objects[msg].inventory, ap);
|
|
break;
|
|
case look:
|
|
vspeak(objects[msg].longs[skip], ap);
|
|
break;
|
|
case hear:
|
|
vspeak(objects[msg].sounds[skip], ap);
|
|
break;
|
|
case study:
|
|
vspeak(objects[msg].texts[skip], ap);
|
|
break;
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
void rspeak(vocab_t i, ...)
|
|
/* Print the i-th "random" message (section 6 of database). */
|
|
{
|
|
va_list ap;
|
|
va_start(ap, i);
|
|
vspeak(arbitrary_messages[i], ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
bool GETIN(FILE *input,
|
|
long *pword1, long *pword1x,
|
|
long *pword2, long *pword2x)
|
|
/* Get a command from the adventurer. Snarf out the first word, pad it with
|
|
* blanks, and return it in WORD1. Chars 6 thru 10 are returned in WORD1X, in
|
|
* case we need to print out the whole word in an error message. Any number of
|
|
* blanks may follow the word. If a second word appears, it is returned in
|
|
* WORD2 (chars 6 thru 10 in WORD2X), else WORD2 is -1. */
|
|
{
|
|
long junk;
|
|
|
|
for (;;) {
|
|
if (game.blklin)
|
|
fputc('\n', stdout);;
|
|
if (!MAPLIN(input))
|
|
return false;
|
|
*pword1 = GETTXT(true, true, true);
|
|
if (game.blklin && *pword1 < 0)
|
|
continue;
|
|
*pword1x = GETTXT(false, true, true);
|
|
do {
|
|
junk = GETTXT(false, true, true);
|
|
} while
|
|
(junk > 0);
|
|
*pword2 = GETTXT(true, true, true);
|
|
*pword2x = GETTXT(false, true, true);
|
|
do {
|
|
junk = GETTXT(false, true, true);
|
|
} while
|
|
(junk > 0);
|
|
if (GETTXT(true, true, true) <= 0)
|
|
return true;
|
|
rspeak(TWO_WORDS);
|
|
}
|
|
}
|
|
|
|
void echo_input(FILE* destination, char* input_prompt, char* input)
|
|
{
|
|
size_t len = strlen(input_prompt) + strlen(input) + 1;
|
|
char* prompt_and_input = (char*) xmalloc(len);
|
|
strcpy(prompt_and_input, input_prompt);
|
|
strcat(prompt_and_input, input);
|
|
fprintf(destination, "%s\n", prompt_and_input);
|
|
free(prompt_and_input);
|
|
}
|
|
|
|
char* get_input()
|
|
{
|
|
// Set up the prompt
|
|
char input_prompt[] = "> ";
|
|
if (!prompt)
|
|
input_prompt[0] = '\0';
|
|
|
|
// Print a blank line if game.blklin tells us to.
|
|
if (game.blklin == true)
|
|
printf("\n");
|
|
|
|
char* input;
|
|
while (true) {
|
|
if (editline)
|
|
input = linenoise(input_prompt);
|
|
else {
|
|
input = NULL;
|
|
size_t n = 0;
|
|
if (isatty(0))
|
|
printf("%s", input_prompt);
|
|
IGNORE(getline(&input, &n, stdin));
|
|
}
|
|
|
|
if (input == NULL) // Got EOF; return with it.
|
|
return(input);
|
|
else if (input[0] == '#') // Ignore comments.
|
|
continue;
|
|
else // We have a 'normal' line; leave the loop.
|
|
break;
|
|
}
|
|
|
|
// Strip trailing newlines from the input
|
|
input[strcspn(input, "\n")] = 0;
|
|
|
|
linenoiseHistoryAdd(input);
|
|
|
|
if (!isatty(0))
|
|
echo_input(stdout, input_prompt, input);
|
|
|
|
if (logfp)
|
|
echo_input(logfp, input_prompt, input);
|
|
|
|
return (input);
|
|
}
|
|
|
|
bool yes(const char* question, const char* yes_response, const char* no_response)
|
|
/* Print message X, wait for yes/no answer. If yes, print Y and return true;
|
|
* if no, print Z and return false. */
|
|
{
|
|
char* reply;
|
|
bool outcome;
|
|
|
|
for (;;) {
|
|
speak(question);
|
|
|
|
reply = get_input();
|
|
if (reply == NULL) {
|
|
linenoiseFree(reply);
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
char* firstword = (char*) xmalloc(strlen(reply)+1);
|
|
sscanf(reply, "%s", firstword);
|
|
|
|
for (int i = 0; i < (int)strlen(firstword); ++i)
|
|
firstword[i] = tolower(firstword[i]);
|
|
|
|
int yes = strncmp("yes", firstword, sizeof("yes") - 1);
|
|
int y = strncmp("y", firstword, sizeof("y") - 1);
|
|
int no = strncmp("no", firstword, sizeof("no") - 1);
|
|
int n = strncmp("n", firstword, sizeof("n") - 1);
|
|
|
|
free(firstword);
|
|
|
|
if (yes == 0 || y == 0) {
|
|
speak(yes_response);
|
|
outcome = true;
|
|
break;
|
|
} else if (no == 0 || n == 0) {
|
|
speak(no_response);
|
|
outcome = false;
|
|
break;
|
|
} else
|
|
rspeak(PLEASE_ANSWER);
|
|
}
|
|
linenoiseFree(reply);
|
|
return (outcome);
|
|
}
|
|
|
|
/* Line-parsing routines (GETTXT, MAKEWD, PUTTXT, SHFTXT) */
|
|
|
|
long GETTXT(bool skip, bool onewrd, bool upper)
|
|
/* Take characters from an input line and pack them into 30-bit words.
|
|
* Skip says to skip leading blanks. ONEWRD says stop if we come to a
|
|
* blank. UPPER says to map all letters to uppercase. If we reach the
|
|
* end of the line, the word is filled up with blanks (which encode as 0's).
|
|
* If we're already at end of line when TEXT is called, we return -1. */
|
|
{
|
|
long text;
|
|
static long splitting = -1;
|
|
|
|
if (LNPOSN != splitting)
|
|
splitting = -1;
|
|
text = -1;
|
|
while (true) {
|
|
if (LNPOSN > LNLENG)
|
|
return (text);
|
|
if ((!skip) || INLINE[LNPOSN] != 0)
|
|
break;
|
|
++LNPOSN;
|
|
}
|
|
|
|
text = 0;
|
|
for (int I = 1; I <= TOKLEN; I++) {
|
|
text = text * 64;
|
|
if (LNPOSN > LNLENG || (onewrd && INLINE[LNPOSN] == 0))
|
|
continue;
|
|
char current = INLINE[LNPOSN];
|
|
if (current < ascii_to_advent['%']) {
|
|
splitting = -1;
|
|
if (upper && current >= ascii_to_advent['a'])
|
|
current = current - 26;
|
|
text = text + current;
|
|
++LNPOSN;
|
|
continue;
|
|
}
|
|
if (splitting != LNPOSN) {
|
|
text = text + ascii_to_advent['%'];
|
|
splitting = LNPOSN;
|
|
continue;
|
|
}
|
|
|
|
text = text + current - ascii_to_advent['%'];
|
|
splitting = -1;
|
|
++LNPOSN;
|
|
}
|
|
|
|
return text;
|
|
}
|
|
|
|
token_t MAKEWD(long letters)
|
|
/* Combine TOKLEN (currently 5) uppercase letters (represented by
|
|
* pairs of decimal digits in lettrs) to form a 30-bit value matching
|
|
* the one that GETTXT would return given those characters plus
|
|
* trailing blanks. Caution: lettrs will overflow 31 bits if
|
|
* 5-letter word starts with V-Z. As a kludgey workaround, you can
|
|
* increment a letter by 5 by adding 50 to the next pair of
|
|
* digits. */
|
|
{
|
|
long i = 1, word = 0;
|
|
|
|
for (long k = letters; k != 0; k = k / 100) {
|
|
word = word + i * (MOD(k, 50) + 10);
|
|
i = i * 64;
|
|
if (MOD(k, 100) > 50)word = word + i * 5;
|
|
}
|
|
i = 64L * 64L * 64L * 64L * 64L / i;
|
|
word = word * i;
|
|
return word;
|
|
}
|
|
|
|
/* Data structure routines */
|
|
|
|
long vocab(long id, long init)
|
|
/* Look up ID in the vocabulary (ATAB) and return its "definition" (KTAB), or
|
|
* -1 if not found. If INIT is positive, this is an initialisation call setting
|
|
* up a keyword variable, and not finding it constitutes a bug. It also means
|
|
* that only KTAB values which taken over 1000 equal INIT may be considered.
|
|
* (Thus "STEPS", which is a motion verb as well as an object, may be located
|
|
* as an object.) And it also means the KTAB value is taken modulo 1000. */
|
|
{
|
|
long lexeme;
|
|
|
|
for (long i = 1; i <= TABSIZ; i++) {
|
|
if (KTAB[i] == -1) {
|
|
lexeme = -1;
|
|
if (init < 0)
|
|
return (lexeme);
|
|
BUG(REQUIRED_VOCABULARY_WORD_NOT_FOUND);
|
|
}
|
|
if (init >= 0 && KTAB[i] / 1000 != init)
|
|
continue;
|
|
if (ATAB[i] == id) {
|
|
lexeme = KTAB[i];
|
|
if (init >= 0)
|
|
lexeme = MOD(lexeme, 1000);
|
|
return (lexeme);
|
|
}
|
|
}
|
|
BUG(RAN_OFF_END_OF_VOCABULARY_TABLE);
|
|
}
|
|
|
|
void juggle(long object)
|
|
/* Juggle an object by picking it up and putting it down again, the purpose
|
|
* being to get the object to the front of the chain of things at its loc. */
|
|
{
|
|
long i, j;
|
|
|
|
i = game.place[object];
|
|
j = game.fixed[object];
|
|
move(object, i);
|
|
move(object + NOBJECTS, j);
|
|
}
|
|
|
|
void move(long object, long where)
|
|
/* Place any object anywhere by picking it up and dropping it. May
|
|
* already be toting, in which case the carry is a no-op. Mustn't
|
|
* pick up objects which are not at any loc, since carry wants to
|
|
* remove objects from game.atloc chains. */
|
|
{
|
|
long from;
|
|
|
|
if (object > NOBJECTS)
|
|
from = game.fixed[object - NOBJECTS];
|
|
else
|
|
from = game.place[object];
|
|
if (from != LOC_NOWHERE && from != CARRIED && !SPECIAL(from))
|
|
carry(object, from);
|
|
drop(object, where);
|
|
}
|
|
|
|
long put(long object, long where, long pval)
|
|
/* PUT is the same as MOVE, except it returns a value used to set up the
|
|
* negated game.prop values for the repository objects. */
|
|
{
|
|
move(object, where);
|
|
return (-1) - pval;;
|
|
}
|
|
|
|
void carry(long object, long where)
|
|
/* Start toting an object, removing it from the list of things at its former
|
|
* location. Incr holdng unless it was already being toted. If object>NOBJECTS
|
|
* (moving "fixed" second loc), don't change game.place or game.holdng. */
|
|
{
|
|
long temp;
|
|
|
|
if (object <= NOBJECTS) {
|
|
if (game.place[object] == CARRIED)
|
|
return;
|
|
game.place[object] = CARRIED;
|
|
++game.holdng;
|
|
}
|
|
if (game.atloc[where] == object) {
|
|
game.atloc[where] = game.link[object];
|
|
return;
|
|
}
|
|
temp = game.atloc[where];
|
|
while (game.link[temp] != object) {
|
|
temp = game.link[temp];
|
|
}
|
|
game.link[temp] = game.link[object];
|
|
}
|
|
|
|
void drop(long object, long where)
|
|
/* Place an object at a given loc, prefixing it onto the game.atloc list. Decr
|
|
* game.holdng if the object was being toted. */
|
|
{
|
|
if (object > NOBJECTS)
|
|
game.fixed[object - NOBJECTS] = where;
|
|
else {
|
|
if (game.place[object] == CARRIED)
|
|
--game.holdng;
|
|
game.place[object] = where;
|
|
}
|
|
if (where <= 0)
|
|
return;
|
|
game.link[object] = game.atloc[where];
|
|
game.atloc[where] = object;
|
|
}
|
|
|
|
long atdwrf(long where)
|
|
/* Return the index of first dwarf at the given location, zero if no dwarf is
|
|
* there (or if dwarves not active yet), -1 if all dwarves are dead. Ignore
|
|
* the pirate (6th dwarf). */
|
|
{
|
|
long at;
|
|
|
|
at = 0;
|
|
if (game.dflag < 2)
|
|
return (at);
|
|
at = -1;
|
|
for (long i = 1; i <= NDWARVES - 1; i++) {
|
|
if (game.dloc[i] == where)
|
|
return i;
|
|
if (game.dloc[i] != 0)
|
|
at = 0;
|
|
}
|
|
return (at);
|
|
}
|
|
|
|
/* Utility routines (SETBIT, TSTBIT, set_seed, get_next_lcg_value,
|
|
* randrange, RNDVOC) */
|
|
|
|
long setbit(long bit)
|
|
/* Returns 2**bit for use in constructing bit-masks. */
|
|
{
|
|
return (1 << bit);
|
|
}
|
|
|
|
bool tstbit(long mask, int bit)
|
|
/* Returns true if the specified bit is set in the mask. */
|
|
{
|
|
return (mask & (1 << bit)) != 0;
|
|
}
|
|
|
|
void set_seed(long seedval)
|
|
/* Set the LCG seed */
|
|
{
|
|
game.lcg_x = (unsigned long) seedval % game.lcg_m;
|
|
}
|
|
|
|
unsigned long get_next_lcg_value(void)
|
|
/* Return the LCG's current value, and then iterate it. */
|
|
{
|
|
unsigned long old_x = game.lcg_x;
|
|
game.lcg_x = (game.lcg_a * game.lcg_x + game.lcg_c) % game.lcg_m;
|
|
return old_x;
|
|
}
|
|
|
|
long randrange(long range)
|
|
/* Return a random integer from [0, range). */
|
|
{
|
|
return range * get_next_lcg_value() / game.lcg_m;
|
|
}
|
|
|
|
long rndvoc(long second, long force)
|
|
/* Searches the vocabulary ATAB for a word whose second character is
|
|
* char, and changes that word such that each of the other four
|
|
* characters is a random letter. If force is non-zero, it is used
|
|
* as the new word. Returns the new word. */
|
|
{
|
|
long rnd = force;
|
|
|
|
if (rnd == 0) {
|
|
for (int i = 1; i <= 5; i++) {
|
|
long j = 11 + randrange(26);
|
|
if (i == 2)
|
|
j = second;
|
|
rnd = rnd * 64 + j;
|
|
}
|
|
}
|
|
|
|
long div = 64L * 64L * 64L;
|
|
for (int i = 1; i <= TABSIZ; i++) {
|
|
if (MOD(ATAB[i] / div, 64L) == second) {
|
|
ATAB[i] = rnd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rnd;
|
|
}
|
|
|
|
|
|
/* Machine dependent routines (MAPLIN, SAVEIO) */
|
|
|
|
bool MAPLIN(FILE *fp)
|
|
{
|
|
bool eof;
|
|
|
|
/* Read a line of input, from the specified input source.
|
|
* This logic is complicated partly because it has to serve
|
|
* several cases with different requirements and partly because
|
|
* of a quirk in linenoise().
|
|
*
|
|
* The quirk shows up when you paste a test log from the clipboard
|
|
* to the program's command prompt. While fgets (as expected)
|
|
* consumes it a line at a time, linenoise() returns the first
|
|
* line and discards the rest. Thus, there needs to be an
|
|
* editline (-s) option to fall back to fgets while still
|
|
* prompting. Note that linenoise does behave properly when
|
|
* fed redirected stdin.
|
|
*
|
|
* The logging is a bit of a mess because there are two distinct cases
|
|
* in which you want to echo commands. One is when shipping them to
|
|
* a log under the -l option, in which case you want to suppress
|
|
* prompt generation (so test logs are unadorned command sequences).
|
|
* On the other hand, if you redirected stdin and are feeding the program
|
|
* a logfile, you *do* want prompt generation - it makes checkfiles
|
|
* easier to read when the commands are marked by a preceding prompt.
|
|
*/
|
|
do {
|
|
if (!editline) {
|
|
if (prompt)
|
|
fputs("> ", stdout);
|
|
IGNORE(fgets(rawbuf, sizeof(rawbuf) - 1, fp));
|
|
eof = (feof(fp));
|
|
} else {
|
|
char *cp = linenoise("> ");
|
|
eof = (cp == NULL);
|
|
if (!eof) {
|
|
strncpy(rawbuf, cp, sizeof(rawbuf) - 1);
|
|
linenoiseHistoryAdd(rawbuf);
|
|
strncat(rawbuf, "\n", sizeof(rawbuf) - strlen(rawbuf) - 1);
|
|
linenoiseFree(cp);
|
|
}
|
|
}
|
|
} while
|
|
(!eof && rawbuf[0] == '#');
|
|
if (eof) {
|
|
if (logfp && fp == stdin)
|
|
fclose(logfp);
|
|
return false;
|
|
} else {
|
|
FILE *efp = NULL;
|
|
if (logfp && fp == stdin)
|
|
efp = logfp;
|
|
else if (!isatty(0))
|
|
efp = stdout;
|
|
if (efp != NULL) {
|
|
if (prompt && efp == stdout)
|
|
fputs("> ", efp);
|
|
IGNORE(fputs(rawbuf, efp));
|
|
}
|
|
strcpy(INLINE + 1, rawbuf);
|
|
/* translate the chars to integers in the range 0-126 and store
|
|
* them in the common array "INLINE". Integer values are as follows:
|
|
* 0 = space [ASCII CODE 40 octal, 32 decimal]
|
|
* 1-2 = !" [ASCII 41-42 octal, 33-34 decimal]
|
|
* 3-10 = '()*+,-. [ASCII 47-56 octal, 39-46 decimal]
|
|
* 11-36 = upper-case letters
|
|
* 37-62 = lower-case letters
|
|
* 63 = percent (%) [ASCII 45 octal, 37 decimal]
|
|
* 64-73 = digits, 0 through 9
|
|
* Remaining characters can be translated any way that is convenient;
|
|
* The above mappings are required so that certain special
|
|
* characters are known to fit in 6 bits and/or can be easily spotted.
|
|
* Array elements beyond the end of the line should be filled with 0,
|
|
* and LNLENG should be set to the index of the last character.
|
|
*
|
|
* If the data file uses a character other than space (e.g., tab) to
|
|
* separate numbers, that character should also translate to 0.
|
|
*
|
|
* This procedure may use the map1,map2 arrays to maintain
|
|
* static data for he mapping. MAP2(1) is set to 0 when the
|
|
* program starts and is not changed thereafter unless the
|
|
* routines in this module choose to do so. */
|
|
LNLENG = 0;
|
|
for (long i = 1; i <= (long)sizeof(INLINE) && INLINE[i] != 0; i++) {
|
|
long val = INLINE[i];
|
|
INLINE[i] = ascii_to_advent[val];
|
|
if (INLINE[i] != 0)
|
|
LNLENG = i;
|
|
}
|
|
LNPOSN = 1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void datime(long* d, long* t)
|
|
{
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
*d = (long) tv.tv_sec;
|
|
*t = (long) tv.tv_usec;
|
|
}
|
|
|
|
void bug(enum bugtype num, const char *error_string)
|
|
{
|
|
fprintf(stderr, "Fatal error %d, %s.\n", num, error_string);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* end */
|