666 lines
18 KiB
C
666 lines
18 KiB
C
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/time.h>
|
|
#include <ctype.h>
|
|
|
|
#include "advent.h"
|
|
#include "database.h"
|
|
#include "linenoise/linenoise.h"
|
|
#include "newdb.h"
|
|
|
|
char* xstrdup(const char* s)
|
|
{
|
|
char* ptr = strdup(s);
|
|
if (ptr == NULL)
|
|
{
|
|
fprintf(stderr, "Out of memory!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return(ptr);
|
|
}
|
|
|
|
void packed_to_token(long packed, char token[6])
|
|
{
|
|
// Unpack and map back to ASCII.
|
|
for (int i = 0; i < 5; ++i)
|
|
{
|
|
char advent = (packed >> i * 6) & 63;
|
|
token[4 - i] = advent_to_ascii[advent];
|
|
}
|
|
|
|
// Ensure the last character is \0.
|
|
token[5] = '\0';
|
|
|
|
// Replace trailing whitespace with \0.
|
|
for (int i = 4; i >= 0; --i)
|
|
{
|
|
if (token[i] == ' ' || token[i] == '\t')
|
|
token[i] = '\0';
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* I/O routines (SPEAK, PSPEAK, RSPEAK, SETPRM, GETIN, YES) */
|
|
|
|
void newspeak(char* msg)
|
|
{
|
|
// Do nothing if we got a null pointer.
|
|
if (msg == NULL)
|
|
return;
|
|
|
|
// Do nothing if we got an empty string.
|
|
if (strlen(msg) == 0)
|
|
return;
|
|
|
|
// Print a newline if the global game.blklin says to.
|
|
if (game.blklin == true)
|
|
printf("\n");
|
|
|
|
// Create a copy of our string, so we can edit it.
|
|
char* copy = xstrdup(msg);
|
|
|
|
// Staging area for stringified parameters.
|
|
char parameters[5][100]; // FIXME: to be replaced with dynamic allocation
|
|
|
|
// Handle format specifiers (including the custom %C, %L, %S) by adjusting the parameter accordingly, and replacing the specifier with %s.
|
|
int pi = 0; // parameter index
|
|
for (int i = 0; i < strlen(msg); ++i)
|
|
{
|
|
if (msg[i] == '%')
|
|
{
|
|
++pi;
|
|
|
|
// Integer specifier. In order to accommodate the fact that PARMS can have both legitimate integers *and* packed tokens, stringify everything. Future work may eliminate the need for this.
|
|
if (msg[i + 1] == 'd')
|
|
{
|
|
copy[i + 1] = 's';
|
|
sprintf(parameters[pi], "%ld", PARMS[pi]);
|
|
}
|
|
|
|
// Unmodified string specifier.
|
|
if (msg[i + 1] == 's')
|
|
{
|
|
packed_to_token(PARMS[pi], parameters[pi]);
|
|
}
|
|
|
|
// Singular/plural specifier.
|
|
if (msg[i + 1] == 'S')
|
|
{
|
|
copy[i + 1] = 's';
|
|
if (PARMS[pi - 1] > 1) // look at the *previous* parameter (which by necessity must be numeric)
|
|
{
|
|
sprintf(parameters[pi], "%s", "s");
|
|
}
|
|
else
|
|
{
|
|
sprintf(parameters[pi], "%s", "");
|
|
}
|
|
}
|
|
|
|
// All-lowercase specifier.
|
|
if (msg[i + 1] == 'L')
|
|
{
|
|
copy[i + 1] = 's';
|
|
packed_to_token(PARMS[pi], parameters[pi]);
|
|
for (int i = 0; i < strlen(parameters[pi]); ++i)
|
|
{
|
|
parameters[pi][i] = tolower(parameters[pi][i]);
|
|
}
|
|
}
|
|
|
|
// First char uppercase, rest lowercase.
|
|
if (msg[i + 1] == 'C')
|
|
{
|
|
copy[i + 1] = 's';
|
|
packed_to_token(PARMS[pi], parameters[pi]);
|
|
for (int i = 0; i < strlen(parameters[pi]); ++i)
|
|
{
|
|
parameters[pi][i] = tolower(parameters[pi][i]);
|
|
}
|
|
parameters[pi][0] = toupper(parameters[pi][0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Render the final string.
|
|
char rendered[2000]; // FIXME: to be replaced with dynamic allocation
|
|
sprintf(rendered, copy, parameters[1], parameters[2], parameters[3], parameters[4]); // FIXME: to be replaced with vsprintf()
|
|
|
|
// Print the message.
|
|
printf("%s\n", rendered);
|
|
|
|
free(copy);
|
|
}
|
|
|
|
void PSPEAK(vocab_t msg,int skip)
|
|
/* Find the skip+1st message from msg and print it. msg should be
|
|
* the index of the inventory message for object. (INVEN+N+1 message
|
|
* is game.prop=N message). */
|
|
{
|
|
if (skip >= 0)
|
|
newspeak(object_descriptions[msg].longs[skip]);
|
|
else
|
|
newspeak(object_descriptions[msg].inventory);
|
|
}
|
|
|
|
void RSPEAK(vocab_t i)
|
|
/* Print the i-th "random" message (section 6 of database). */
|
|
{
|
|
newspeak(arbitrary_messages[i]);
|
|
}
|
|
|
|
void SETPRM(long first, long p1, long p2)
|
|
/* Stores parameters into the PRMCOM parms array for use by speak. P1 and P2
|
|
* are stored into PARMS(first) and PARMS(first+1). */
|
|
{
|
|
if (first >= MAXPARMS)
|
|
BUG(29);
|
|
else {
|
|
PARMS[first] = p1;
|
|
PARMS[first+1] = p2;
|
|
}
|
|
}
|
|
|
|
bool GETIN(FILE *input,
|
|
long *pword1, long *pword1x,
|
|
long *pword2, long *pword2x)
|
|
/* Get a command from the adventurer. Snarf out the first word, pad it with
|
|
* blanks, and return it in WORD1. Chars 6 thru 10 are returned in WORD1X, in
|
|
* case we need to print out the whole word in an error message. Any number of
|
|
* blanks may follow the word. If a second word appears, it is returned in
|
|
* WORD2 (chars 6 thru 10 in WORD2X), else WORD2 is -1. */
|
|
{
|
|
long junk;
|
|
|
|
for (;;) {
|
|
if (game.blklin)
|
|
TYPE0();
|
|
if (!MAPLIN(input))
|
|
return false;
|
|
*pword1=GETTXT(true,true,true);
|
|
if (game.blklin && *pword1 < 0)
|
|
continue;
|
|
*pword1x=GETTXT(false,true,true);
|
|
do {
|
|
junk=GETTXT(false,true,true);
|
|
} while
|
|
(junk > 0);
|
|
*pword2=GETTXT(true,true,true);
|
|
*pword2x=GETTXT(false,true,true);
|
|
do {
|
|
junk=GETTXT(false,true,true);
|
|
} while
|
|
(junk > 0);
|
|
if (GETTXT(true,true,true) <= 0)
|
|
return true;
|
|
RSPEAK(53);
|
|
}
|
|
}
|
|
|
|
long YES(FILE *input, vocab_t x, vocab_t y, vocab_t z)
|
|
/* Print message X, wait for yes/no answer. If yes, print Y and return true;
|
|
* if no, print Z and return false. */
|
|
{
|
|
token_t reply, junk1, junk2, junk3;
|
|
|
|
for (;;) {
|
|
RSPEAK(x);
|
|
GETIN(input, &reply, &junk1, &junk2, &junk3);
|
|
if (reply == MAKEWD(250519) || reply == MAKEWD(25)) {
|
|
RSPEAK(y);
|
|
return true;
|
|
}
|
|
if (reply == MAKEWD(1415) || reply == MAKEWD(14)) {
|
|
RSPEAK(z);
|
|
return false;
|
|
}
|
|
RSPEAK(185);
|
|
}
|
|
}
|
|
|
|
/* Line-parsing routines (GETTXT, MAKEWD, PUTTXT, SHFTXT, TYPE0) */
|
|
|
|
long GETTXT(bool skip, bool onewrd, bool upper)
|
|
/* Take characters from an input line and pack them into 30-bit words.
|
|
* Skip says to skip leading blanks. ONEWRD says stop if we come to a
|
|
* blank. UPPER says to map all letters to uppercase. If we reach the
|
|
* end of the line, the word is filled up with blanks (which encode as 0's).
|
|
* If we're already at end of line when TEXT is called, we return -1. */
|
|
{
|
|
long text;
|
|
static long splitting = -1;
|
|
|
|
if (LNPOSN != splitting)
|
|
splitting = -1;
|
|
text= -1;
|
|
while (true) {
|
|
if (LNPOSN > LNLENG)
|
|
return(text);
|
|
if ((!skip) || INLINE[LNPOSN] != 0)
|
|
break;
|
|
++LNPOSN;
|
|
}
|
|
|
|
text=0;
|
|
for (int I=1; I<=TOKLEN; I++) {
|
|
text=text*64;
|
|
if (LNPOSN > LNLENG || (onewrd && INLINE[LNPOSN] == 0))
|
|
continue;
|
|
char current=INLINE[LNPOSN];
|
|
if (current < ascii_to_advent['%']) {
|
|
splitting = -1;
|
|
if (upper && current >= ascii_to_advent['a'])
|
|
current=current-26;
|
|
text=text+current;
|
|
++LNPOSN;
|
|
continue;
|
|
}
|
|
if (splitting != LNPOSN) {
|
|
text=text+ascii_to_advent['%'];
|
|
splitting = LNPOSN;
|
|
continue;
|
|
}
|
|
|
|
text=text+current-ascii_to_advent['%'];
|
|
splitting = -1;
|
|
++LNPOSN;
|
|
}
|
|
|
|
return text;
|
|
}
|
|
|
|
token_t MAKEWD(long letters)
|
|
/* Combine TOKLEN (currently 5) uppercase letters (represented by
|
|
* pairs of decimal digits in lettrs) to form a 30-bit value matching
|
|
* the one that GETTXT would return given those characters plus
|
|
* trailing blanks. Caution: lettrs will overflow 31 bits if
|
|
* 5-letter word starts with V-Z. As a kludgey workaround, you can
|
|
* increment a letter by 5 by adding 50 to the next pair of
|
|
* digits. */
|
|
{
|
|
long i = 1, word = 0;
|
|
|
|
for (long k=letters; k != 0; k=k/100) {
|
|
word=word+i*(MOD(k,50)+10);
|
|
i=i*64;
|
|
if (MOD(k,100) > 50)word=word+i*5;
|
|
}
|
|
i=64L*64L*64L*64L*64L/i;
|
|
word=word*i;
|
|
return word;
|
|
}
|
|
|
|
void TYPE0(void)
|
|
/* Type a blank line. This procedure is provided as a convenience for callers
|
|
* who otherwise have no use for MAPCOM. */
|
|
{
|
|
long temp;
|
|
|
|
temp=LNLENG;
|
|
LNLENG=0;
|
|
TYPE();
|
|
LNLENG=temp;
|
|
return;
|
|
}
|
|
|
|
/* Data structure routines */
|
|
|
|
long VOCAB(long id, long init)
|
|
/* Look up ID in the vocabulary (ATAB) and return its "definition" (KTAB), or
|
|
* -1 if not found. If INIT is positive, this is an initialisation call setting
|
|
* up a keyword variable, and not finding it constitutes a bug. It also means
|
|
* that only KTAB values which taken over 1000 equal INIT may be considered.
|
|
* (Thus "STEPS", which is a motion verb as well as an object, may be located
|
|
* as an object.) And it also means the KTAB value is taken modulo 1000. */
|
|
{
|
|
long i, lexeme;
|
|
|
|
for (i=1; i<=TABSIZ; i++) {
|
|
if (KTAB[i] == -1) {
|
|
lexeme= -1;
|
|
if (init < 0)
|
|
return(lexeme);
|
|
BUG(5);
|
|
}
|
|
if (init >= 0 && KTAB[i]/1000 != init)
|
|
continue;
|
|
if (ATAB[i] == id) {
|
|
lexeme=KTAB[i];
|
|
if (init >= 0)
|
|
lexeme=MOD(lexeme,1000);
|
|
return(lexeme);
|
|
}
|
|
}
|
|
BUG(21);
|
|
}
|
|
|
|
void DSTROY(long object)
|
|
/* Permanently eliminate "object" by moving to a non-existent location. */
|
|
{
|
|
MOVE(object,0);
|
|
}
|
|
|
|
void JUGGLE(long object)
|
|
/* Juggle an object by picking it up and putting it down again, the purpose
|
|
* being to get the object to the front of the chain of things at its loc. */
|
|
{
|
|
long i, j;
|
|
|
|
i=game.place[object];
|
|
j=game.fixed[object];
|
|
MOVE(object,i);
|
|
MOVE(object+NOBJECTS,j);
|
|
}
|
|
|
|
void MOVE(long object, long where)
|
|
/* Place any object anywhere by picking it up and dropping it. May
|
|
* already be toting, in which case the carry is a no-op. Mustn't
|
|
* pick up objects which are not at any loc, since carry wants to
|
|
* remove objects from game.atloc chains. */
|
|
{
|
|
long from;
|
|
|
|
if (object > NOBJECTS)
|
|
from=game.fixed[object-NOBJECTS];
|
|
else
|
|
from=game.place[object];
|
|
if (from > 0 && from <= 300)
|
|
CARRY(object,from);
|
|
DROP(object,where);
|
|
}
|
|
|
|
long PUT(long object, long where, long pval)
|
|
/* PUT is the same as MOVE, except it returns a value used to set up the
|
|
* negated game.prop values for the repository objects. */
|
|
{
|
|
MOVE(object,where);
|
|
return (-1)-pval;;
|
|
}
|
|
|
|
void CARRY(long object, long where)
|
|
/* Start toting an object, removing it from the list of things at its former
|
|
* location. Incr holdng unless it was already being toted. If object>NOBJECTS
|
|
* (moving "fixed" second loc), don't change game.place or game.holdng. */
|
|
{
|
|
long temp;
|
|
|
|
if (object <= NOBJECTS) {
|
|
if (game.place[object] == -1)
|
|
return;
|
|
game.place[object]= -1;
|
|
++game.holdng;
|
|
}
|
|
if (game.atloc[where] == object) {
|
|
game.atloc[where]=game.link[object];
|
|
return;
|
|
}
|
|
temp=game.atloc[where];
|
|
while (game.link[temp] != object) {
|
|
temp=game.link[temp];
|
|
}
|
|
game.link[temp]=game.link[object];
|
|
}
|
|
|
|
void DROP(long object, long where)
|
|
/* Place an object at a given loc, prefixing it onto the game.atloc list. Decr
|
|
* game.holdng if the object was being toted. */
|
|
{
|
|
if (object > NOBJECTS)
|
|
game.fixed[object-NOBJECTS] = where;
|
|
else
|
|
{
|
|
if (game.place[object] == -1)
|
|
--game.holdng;
|
|
game.place[object] = where;
|
|
}
|
|
if (where <= 0)
|
|
return;
|
|
game.link[object] = game.atloc[where];
|
|
game.atloc[where] = object;
|
|
}
|
|
|
|
long ATDWRF(long where)
|
|
/* Return the index of first dwarf at the given location, zero if no dwarf is
|
|
* there (or if dwarves not active yet), -1 if all dwarves are dead. Ignore
|
|
* the pirate (6th dwarf). */
|
|
{
|
|
long at, i;
|
|
|
|
at =0;
|
|
if (game.dflag < 2)
|
|
return(at);
|
|
at = -1;
|
|
for (i=1; i<=NDWARVES-1; i++) {
|
|
if (game.dloc[i] == where)
|
|
return i;
|
|
if (game.dloc[i] != 0)
|
|
at=0;
|
|
}
|
|
return(at);
|
|
}
|
|
|
|
/* Utility routines (SETBIT, TSTBIT, set_seed, get_next_lcg_value,
|
|
* randrange, RNDVOC, BUG) */
|
|
|
|
long SETBIT(long bit)
|
|
/* Returns 2**bit for use in constructing bit-masks. */
|
|
{
|
|
return(1 << bit);
|
|
}
|
|
|
|
bool TSTBIT(long mask, int bit)
|
|
/* Returns true if the specified bit is set in the mask. */
|
|
{
|
|
return (mask & (1 << bit)) != 0;
|
|
}
|
|
|
|
void set_seed(long seedval)
|
|
/* Set the LCG seed */
|
|
{
|
|
lcgstate.x = (unsigned long) seedval % lcgstate.m;
|
|
}
|
|
|
|
unsigned long get_next_lcg_value(void)
|
|
/* Return the LCG's current value, and then iterate it. */
|
|
{
|
|
unsigned long old_x = lcgstate.x;
|
|
lcgstate.x = (lcgstate.a * lcgstate.x + lcgstate.c) % lcgstate.m;
|
|
return old_x;
|
|
}
|
|
|
|
long randrange(long range)
|
|
/* Return a random integer from [0, range). */
|
|
{
|
|
return range * get_next_lcg_value() / lcgstate.m;
|
|
}
|
|
|
|
long RNDVOC(long second, long force)
|
|
/* Searches the vocabulary ATAB for a word whose second character is
|
|
* char, and changes that word such that each of the other four
|
|
* characters is a random letter. If force is non-zero, it is used
|
|
* as the new word. Returns the new word. */
|
|
{
|
|
long rnd = force;
|
|
|
|
if (rnd == 0) {
|
|
for (int i = 1; i <= 5; i++) {
|
|
long j = 11 + randrange(26);
|
|
if (i == 2)
|
|
j = second;
|
|
rnd = rnd * 64 + j;
|
|
}
|
|
}
|
|
|
|
long div = 64L * 64L * 64L;
|
|
for (int i = 1; i <= TABSIZ; i++) {
|
|
if (MOD(ATAB[i]/div, 64L) == second)
|
|
{
|
|
ATAB[i] = rnd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rnd;
|
|
}
|
|
|
|
void BUG(long num)
|
|
/* The following conditions are currently considered fatal bugs. Numbers < 20
|
|
* are detected while reading the database; the others occur at "run time".
|
|
* 0 Message line > 70 characters
|
|
* 1 Null line in message
|
|
* 2 Too many words of messages
|
|
* 3 Too many travel options
|
|
* 4 Too many vocabulary words
|
|
* 5 Required vocabulary word not found
|
|
* 6 Too many RTEXT messages
|
|
* 7 Too many hints
|
|
* 8 Location has cond bit being set twice
|
|
* 9 Invalid section number in database
|
|
* 10 Too many locations
|
|
* 11 Too many class or turn messages
|
|
* 20 Special travel (500>L>300) exceeds goto list
|
|
* 21 Ran off end of vocabulary table
|
|
* 22 Vocabulary type (N/1000) not between 0 and 3
|
|
* 23 Intransitive action verb exceeds goto list
|
|
* 24 Transitive action verb exceeds goto list
|
|
* 25 Conditional travel entry with no alternative
|
|
* 26 Location has no travel entries
|
|
* 27 Hint number exceeds goto list
|
|
* 28 Invalid month returned by date function
|
|
* 29 Too many parameters given to SETPRM */
|
|
{
|
|
|
|
printf("Fatal error %ld. See source code for interpretation.\n", num);
|
|
exit(0);
|
|
}
|
|
|
|
/* Machine dependent routines (MAPLIN, TYPE, SAVEIO) */
|
|
|
|
bool MAPLIN(FILE *fp)
|
|
{
|
|
long i, val;
|
|
bool eof;
|
|
|
|
/* Read a line of input, from the specified input source.
|
|
* This logic is complicated partly because it has to serve
|
|
* several cases with different requirements and partly because
|
|
* of a quirk in linenoise().
|
|
*
|
|
* The quirk shows up when you paste a test log from the clipboard
|
|
* to the program's command prompt. While fgets (as expected)
|
|
* consumes it a line at a time, linenoise() returns the first
|
|
* line and discards the rest. Thus, there needs to be an
|
|
* editline (-s) option to fall back to fgets while still
|
|
* prompting. Note that linenoise does behave properly when
|
|
* fed redirected stdin.
|
|
*
|
|
* The logging is a bit of a mess because there are two distinct cases
|
|
* in which you want to echo commands. One is when shipping them to
|
|
* a log under the -l option, in which case you want to suppress
|
|
* prompt generation (so test logs are unadorned command sequences).
|
|
* On the other hand, if you redireceted stdin and are feeding the program
|
|
* a logfile, you *do* want prompt generation - it makes checkfiles
|
|
* easier to read when the commands are maked by a preceding prompt.
|
|
*/
|
|
do {
|
|
if (!editline) {
|
|
if (prompt)
|
|
fputs("> ", stdout);
|
|
IGNORE(fgets(rawbuf,sizeof(rawbuf)-1,fp));
|
|
eof = (feof(fp));
|
|
} else {
|
|
char *cp = linenoise("> ");
|
|
eof = (cp == NULL);
|
|
if (!eof) {
|
|
strncpy(rawbuf, cp, sizeof(rawbuf)-1);
|
|
linenoiseHistoryAdd(rawbuf);
|
|
strncat(rawbuf, "\n", sizeof(rawbuf)-1);
|
|
linenoiseFree(cp);
|
|
}
|
|
}
|
|
} while
|
|
(!eof && rawbuf[0] == '#');
|
|
if (eof) {
|
|
if (logfp && fp == stdin)
|
|
fclose(logfp);
|
|
return false;
|
|
} else {
|
|
FILE *efp = NULL;
|
|
if (logfp && fp == stdin)
|
|
efp = logfp;
|
|
else if (!isatty(0))
|
|
efp = stdout;
|
|
if (efp != NULL)
|
|
{
|
|
if (prompt && efp == stdout)
|
|
fputs("> ", efp);
|
|
IGNORE(fputs(rawbuf, efp));
|
|
}
|
|
strcpy(INLINE+1, rawbuf);
|
|
/* translate the chars to integers in the range 0-126 and store
|
|
* them in the common array "INLINE". Integer values are as follows:
|
|
* 0 = space [ASCII CODE 40 octal, 32 decimal]
|
|
* 1-2 = !" [ASCII 41-42 octal, 33-34 decimal]
|
|
* 3-10 = '()*+,-. [ASCII 47-56 octal, 39-46 decimal]
|
|
* 11-36 = upper-case letters
|
|
* 37-62 = lower-case letters
|
|
* 63 = percent (%) [ASCII 45 octal, 37 decimal]
|
|
* 64-73 = digits, 0 through 9
|
|
* Remaining characters can be translated any way that is convenient;
|
|
* The "TYPE" routine below is used to map them back to characters when
|
|
* necessary. The above mappings are required so that certain special
|
|
* characters are known to fit in 6 bits and/or can be easily spotted.
|
|
* Array elements beyond the end of the line should be filled with 0,
|
|
* and LNLENG should be set to the index of the last character.
|
|
*
|
|
* If the data file uses a character other than space (e.g., tab) to
|
|
* separate numbers, that character should also translate to 0.
|
|
*
|
|
* This procedure may use the map1,map2 arrays to maintain static data for
|
|
* the mapping. MAP2(1) is set to 0 when the program starts
|
|
* and is not changed thereafter unless the routines on this page choose
|
|
* to do so. */
|
|
LNLENG=0;
|
|
for (i=1; i<=(long)sizeof(INLINE) && INLINE[i]!=0; i++) {
|
|
val=INLINE[i];
|
|
INLINE[i]=ascii_to_advent[val];
|
|
if (INLINE[i] != 0)
|
|
LNLENG=i;
|
|
}
|
|
LNPOSN=1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void TYPE(void)
|
|
/* Type the first "LNLENG" characters stored in inline, mapping them
|
|
* from integers to text per the rules described above. INLINE
|
|
* may be changed by this routine. */
|
|
{
|
|
long i;
|
|
|
|
if (LNLENG == 0) {
|
|
printf("\n");
|
|
return;
|
|
}
|
|
|
|
for (i=1; i<=LNLENG; i++) {
|
|
INLINE[i]=advent_to_ascii[INLINE[i]];
|
|
}
|
|
INLINE[LNLENG+1]=0;
|
|
printf("%s\n", INLINE+1);
|
|
return;
|
|
}
|
|
|
|
void DATIME(long* d, long* t)
|
|
{
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
*d = (long) tv.tv_sec;
|
|
*t = (long) tv.tv_usec;
|
|
}
|
|
|
|
/* end */
|