/* * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "board/board.h" #include "boot_tests.h" #include "drivers/button.h" #include "drivers/dbgserial.h" #include "drivers/display.h" #include "drivers/flash.h" #include "drivers/periph_config.h" #include "drivers/rtc.h" #include "drivers/watchdog.h" #include "firmware.h" #include "fw_copy.h" #include "pebble_errors.h" #include "standby.h" #include "system/bootbits.h" #include "system/reset.h" #include "util/delay.h" #include "stm32f2xx.h" static const uint8_t SELECT_BUTTON_MASK = 0x4; bool firmware_is_new_world(void* base) { uint32_t* fw_base = base; if (fw_base == NULL) { fw_base = (uint32_t*)FIRMWARE_NEWWORLD_BASE; } if (fw_base[0] == 0xFFFFFFFF || fw_base[1] == 0xFFFFFFFF) { // Erased flash return false; } if (fw_base[FW_IDENTIFIER_OFFSET / sizeof(uint32_t)] != 0x4E65576F) { // NeWo return false; } // TODO: Additional checks? return true; } static void prv_get_fw_reset_vector(void **reset_handler, void **initial_stack_pointer) { void** fw_vector_table; if (firmware_is_new_world(NULL)) { fw_vector_table = (void**) FIRMWARE_NEWWORLD_BASE; } else { fw_vector_table = (void**) FIRMWARE_OLDWORLD_BASE; } *initial_stack_pointer = fw_vector_table[0]; *reset_handler = fw_vector_table[1]; } static void prv_hw_reset(void) { // Disable all interrupts, just in case. for (int i = 0; i < 8; ++i) { // Interrupt Clear-Enable Register NVIC->ICER[i] = 0xFFFFFFFF; // Interrupt Clear-Pending Register NVIC->ICPR[i] = 0xFFFFFFFF; } // Set the peripheral clock enable registers to their reset values as // specified in the reference manual. RCC->AHB1ENR = 0; RCC->AHB2ENR = 0; RCC->AHB3ENR = 0; RCC->APB1ENR = 0; RCC->APB2ENR = 0; // Reset most peripherals used by the bootloader. We want to minimize the // chances that the firmware unintentionally relies on some state that the // bootloader leaves behind. This includes disabling the PLL. // GPIOs are not reset here: resetting them would change their output values, // which could unintentionally modify peripherals (such as the display). // The backup domain is not reset; that would be foolish. RCC_DeInit(); // Reset flags for each bus taken from reset register lists in reference manual // starting with 5.3.5 "RCC AHB1 peripheral reset register" const uint32_t ahb1_periphs = 0 | RCC_AHB1Periph_CRC | RCC_AHB1Periph_DMA1 | RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_ETH_MAC | RCC_AHB1Periph_OTG_HS; RCC_AHB1PeriphResetCmd(ahb1_periphs, ENABLE); RCC_AHB1PeriphResetCmd(ahb1_periphs, DISABLE); const uint32_t ahb2_periphs = 0 | RCC_AHB2Periph_DCMI | RCC_AHB2Periph_CRYP | RCC_AHB2Periph_HASH | RCC_AHB2Periph_RNG | RCC_AHB2Periph_OTG_FS; RCC_AHB2PeriphResetCmd(ahb2_periphs, ENABLE); RCC_AHB2PeriphResetCmd(ahb2_periphs, DISABLE); const uint32_t ahb3_periphs = 0 | RCC_AHB3Periph_FSMC; RCC_AHB3PeriphResetCmd(ahb3_periphs, ENABLE); RCC_AHB3PeriphResetCmd(ahb3_periphs, DISABLE); const uint32_t apb1_periphs = 0 | RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3 | RCC_APB1Periph_TIM4 | RCC_APB1Periph_TIM5 | RCC_APB1Periph_TIM6 | RCC_APB1Periph_TIM7 | RCC_APB1Periph_TIM12 | RCC_APB1Periph_TIM13 | RCC_APB1Periph_TIM14 | RCC_APB1Periph_WWDG | RCC_APB1Periph_SPI2 | RCC_APB1Periph_SPI3 | RCC_APB1Periph_USART2 | RCC_APB1Periph_USART3 | RCC_APB1Periph_UART4 | RCC_APB1Periph_UART5 | RCC_APB1Periph_I2C1 | RCC_APB1Periph_I2C2 | RCC_APB1Periph_I2C3 | RCC_APB1Periph_CAN1 | RCC_APB1Periph_CAN2 | RCC_APB1Periph_PWR | RCC_APB1Periph_DAC; RCC_APB1PeriphResetCmd(apb1_periphs, ENABLE); RCC_APB1PeriphResetCmd(apb1_periphs, DISABLE); const uint32_t apb2_periphs = 0 | RCC_APB2Periph_TIM1 | RCC_APB2Periph_TIM8 | RCC_APB2Periph_USART1 | RCC_APB2Periph_USART6 | RCC_APB2Periph_ADC | RCC_APB2Periph_SDIO | RCC_APB2Periph_SPI1 | RCC_APB2Periph_SYSCFG | RCC_APB2Periph_TIM9 | RCC_APB2Periph_TIM10 | RCC_APB2Periph_TIM11; RCC_APB2PeriphResetCmd(apb2_periphs, ENABLE); RCC_APB2PeriphResetCmd(apb2_periphs, DISABLE); } static void __attribute__((noreturn)) prv_jump_to_fw(void) { void *initial_stack_pointer, *reset_handler; prv_get_fw_reset_vector(&reset_handler, &initial_stack_pointer); dbgserial_print("Booting firmware @ "); dbgserial_print_hex((uintptr_t)reset_handler); dbgserial_newline(); dbgserial_newline(); prv_hw_reset(); // The Cortex-M user guide states that the reset values for the core registers // are as follows: // R0-R12 = Unknown // MSP = VECTOR_TABLE[0] (main stack pointer) // PSP = Unknown (process stack pointer) // LR = 0xFFFFFFFF // PC = VECTOR_TABLE[1] // PRIMASK = 0x0 // FAULTMASK = 0x0 // BASEPRI = 0x0 // CONTROL = 0x0 // // Attempt to put the processor into as close to the reset state as possible // before passing control to the firmware. // // No attempt is made to set CONTROL to zero as it should already be set to // the reset value when this code executes. __asm volatile ( "cpsie if\n" // Clear PRIMASK and FAULTMASK "mov lr, 0xFFFFFFFF\n" "mov sp, %[initial_sp]\n" "bx %[reset_handler]\n" : : [initial_sp] "r" (initial_stack_pointer), [reset_handler] "r" (reset_handler) ); __builtin_unreachable(); } static bool prv_check_and_increment_reset_loop_detection_bits(void) { uint8_t counter = (boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_THREE) << 2) | (boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_TWO) << 1) | boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_ONE); switch (++counter) { case 1: boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE); break; case 2: boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE); boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_TWO); break; case 3: boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE); break; case 4: boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE); boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_TWO); boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_THREE); break; case 5: boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE); break; case 6: boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE); boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_TWO); break; case 7: boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE); break; default: boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE); boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_TWO); boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_THREE); return true; } return false; } static bool prv_check_for_recovery_start_failure() { return boot_bit_test(BOOT_BIT_RECOVERY_START_IN_PROGRESS); } static bool prv_check_for_fw_start_failure() { // Add more failure conditions here. if (!watchdog_check_reset_flag() && !boot_bit_test(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED)) { // We're good, we're just starting normally. dbgserial_putstr("Booting normally"); boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE); boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO); return false; } // We failed to start our firmware successfully! if (watchdog_check_reset_flag()) { dbgserial_putstr("Watchdog caused a reset"); } if (boot_bit_test(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED)) { dbgserial_putstr("Software failure caused a reset"); } // Clean up after the last failure. boot_bit_clear(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED); // We have a "three strikes" algorithm: if the watch fails three times, return true // to tell the parent we should load the recovery firmware. A reset for any other reason // will reset this algorithm. if (boot_bit_test(BOOT_BIT_FW_START_FAIL_STRIKE_TWO)) { // Yikes, our firmware is screwed. Boot into recovery mode. dbgserial_putstr("Boot failed, strike 3"); boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE); boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO); return true; } else if (boot_bit_test(BOOT_BIT_FW_START_FAIL_STRIKE_ONE)) { dbgserial_putstr("Boot failed, strike 2"); boot_bit_set(BOOT_BIT_FW_START_FAIL_STRIKE_TWO); } else { dbgserial_putstr("Boot failed, strike 1"); boot_bit_set(BOOT_BIT_FW_START_FAIL_STRIKE_ONE); } return false; } static bool prv_check_force_boot_recovery(void) { if (boot_bit_test(BOOT_BIT_FORCE_PRF)) { boot_bit_clear(BOOT_BIT_FORCE_PRF); return true; } if (button_is_pressed(BUTTON_ID_UP) && button_is_pressed(BUTTON_ID_BACK)) { dbgserial_putstr("Hold down UP + BACK for 5 secs. to force-boot PRF"); for (int i = 0; i < 5000; ++i) { if (!(button_is_pressed(BUTTON_ID_UP) && button_is_pressed(BUTTON_ID_BACK))) { // stop waiting if not held down any longer return false; } delay_ms(1); } return true; } void *reset_vector, *initial_sp; prv_get_fw_reset_vector(&reset_vector, &initial_sp); if ((uintptr_t)reset_vector == 0xffffffff || (uintptr_t)initial_sp == 0xffffffff) { dbgserial_putstr("Firmware is erased"); return true; } return false; } static void prv_sad_watch(uint32_t error_code) { dbgserial_print("SAD WATCH: "); dbgserial_print_hex(error_code); dbgserial_newline(); display_error_code(error_code); static uint8_t prev_button_state = 0; prev_button_state = button_get_state_bits() & ~SELECT_BUTTON_MASK; while (1) { // See if we should restart uint8_t button_state = button_get_state_bits() & ~SELECT_BUTTON_MASK; if (button_state != prev_button_state) { system_reset(); } delay_ms(10); } } static void prv_print_reset_reason(void) { dbgserial_print("Reset Register "); dbgserial_print_hex(RCC->CSR); dbgserial_newline(); if (RCC_GetFlagStatus(RCC_FLAG_BORRST) == SET) { dbgserial_putstr("Brown out reset"); } } // SystemInit does this for the firmware, but since the bootloader isn't using // the vendor SystemInit, initialize the flash cache here static void prv_configure_system_flash(void) { // Enable flash instruction and data caches FLASH->ACR = FLASH_ACR_ICEN | FLASH_ACR_DCEN; } // RTC and bootbit assume access to the backup // registers has been enabled static void prv_enable_backup_access() { RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); PWR_BackupAccessCmd(ENABLE); // Disable write-protect on RTC_BKP_x registers } void boot_main(void) { prv_configure_system_flash(); prv_enable_backup_access(); dbgserial_init(); prv_print_reset_reason(); boot_bit_init(); if (!rtc_init()) { // Need to initialize the display in this // case so we can see the sad watch display_init(); prv_sad_watch(ERROR_CANT_START_LSE); } // Standby checks need to know the button pressed state button_init(); // On tintin the bootloader handles entering and leaving standby manually if (boot_bit_test(BOOT_BIT_STANDBY_MODE_REQUESTED)) { boot_bit_clear(BOOT_BIT_STANDBY_MODE_REQUESTED); enter_standby_mode(); } else if (PWR_GetFlagStatus(PWR_FLAG_SB) == SET) { // Woke up from standby // Clear the standby flag since only a power reset clears it PWR_ClearFlag(PWR_FLAG_SB); // Before coming out of standby make sure we should be waking up if (should_leave_standby_mode()) { leave_standby_mode(); } else { dbgserial_putstr("returning to standby"); enter_standby_mode(); } dbgserial_putstr("leaving standby"); } else { // If not entering or leaving standby this is a cold boot. The firmware // expects the clock to be running in fast mode rtc_initialize_fast_mode(); } // Print out our super cool bootloader logo: // ______ __ // /_ __/ __/ /_ // / / /_ __/ // /_/ /_/ dbgserial_putstr(" ______ __\r\n/_ __/ __/ /\r\n / / /_ __/\r\n/_/ /_/\r\n"); boot_version_write(); // Write the bootloader version to serial-out dbgserial_print("Bootloader version: "); dbgserial_print_hex(boot_version_read()); dbgserial_newline(); if (boot_bit_test(BOOT_BIT_FW_STABLE)) { dbgserial_putstr("Last firmware boot was stable; clear strikes"); boot_bit_clear(BOOT_BIT_FW_STABLE); boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE); boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO); boot_bit_clear(BOOT_BIT_RECOVERY_LOAD_FAIL_STRIKE_ONE); boot_bit_clear(BOOT_BIT_RECOVERY_LOAD_FAIL_STRIKE_TWO); } display_init(); display_boot_splash(); #ifdef DISPLAY_DEMO_LOOP while (1) { display_boot_splash(); delay_us(1000000); for (int i=0; i <= 91; ++i) { display_firmware_update_progress(i, 91); delay_us(80000); } for (uint32_t i=0; i <= 0xf; ++i) { display_error_code(i * 0x11111111); delay_us(200000); } for (uint32_t i=0; i < 8; ++i) { for (uint32_t j=1; j <= 0xf; ++j) { display_error_code(j << (i*4)); delay_us(200000); } } display_error_code(0x01234567); delay_us(200000); display_error_code(0x89abcdef); delay_us(200000); display_error_code(0xcafebabe); delay_us(200000); display_error_code(0xfeedface); delay_us(200000); display_error_code(0x8badf00d); delay_us(200000); display_error_code(0xbad1ce40); delay_us(200000); display_error_code(0xbeefcace); delay_us(200000); display_error_code(0x0defaced); delay_us(200000); display_error_code(0xd15ea5e5); delay_us(200000); display_error_code(0xdeadbeef); delay_us(200000); } #endif flash_init(); if (is_button_stuck()) { prv_sad_watch(ERROR_STUCK_BUTTON); } if (is_flash_broken()) { prv_sad_watch(ERROR_BAD_SPI_FLASH); } boot_bit_dump(); // If the recovery firmware crashed at start-up, the watch is now a // $150 brick. That's life! if (prv_check_for_recovery_start_failure()) { boot_bit_clear(BOOT_BIT_RECOVERY_START_IN_PROGRESS); prv_sad_watch(ERROR_CANT_LOAD_FW); } bool force_boot_recovery_mode = prv_check_force_boot_recovery(); if (force_boot_recovery_mode) { dbgserial_putstr("Force-booting recovery mode..."); } if (force_boot_recovery_mode || prv_check_for_fw_start_failure()) { if (!switch_to_recovery_fw()) { // We've failed to load recovery mode too many times. prv_sad_watch(ERROR_CANT_LOAD_FW); } } else { check_update_fw(); } if (prv_check_and_increment_reset_loop_detection_bits()) { prv_sad_watch(ERROR_RESET_LOOP); } watchdog_init(); #ifndef NO_WATCHDOG watchdog_start(); #endif prv_jump_to_fw(); }