pebble/tools/power_monitor/i2c.py
2025-01-27 11:38:16 -08:00

326 lines
9.5 KiB
Python

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code adapted from libmpsse implementation
# May be combined with pyftdi at a later date
# - please do not mix Tintin code in
from pyftdi.pyftdi import ftdi
from array import array as Array
class MPSSE(ftdi.Ftdi):
I2C = 5
CMD_SIZE = 3
# Write bits, not bytes
MPSSE_WRITE_NEG = 0x01
MPSSE_BITMODE = 0x02
MPSSE_READ_NEG = 0x04
MPSSE_DO_WRITE = 0x10
MPSSE_DO_READ = 0x20
MPSSE_OK = 0
MPSSE_FAIL = -1
ACK = 0
NACK = 1
I2C_TRANSFER_SIZE = 64
# Enum low_bits_status
STARTED = 0
STOPPED = 1
# Pins
SK = 1
DO = 2
DI = 4
CS = 8
GPIO0 = 16
GPIO1 = 32
GPIO2 = 64
GPIO3 = 128
DEFAULT_TRIS = (SK | DO | GPIO0 | GPIO1 | GPIO2 | GPIO3)
DEFAULT_PORT = SK
MAX_SETUP_COMMANDS = 10
DISABLE_ADAPTIVE_CLOCK = 0x97
ENABLE_3_PHASE_CLOCK = 0x8C
# 0x0 for MSB, 0x8 for LSB; I2C is MSB
ENDIANESS = 0x0
def __init__(self):
# Init the superconstructor
super(MPSSE, self).__init__()
# Init, will open the mpsse and setup the pins
def Open(self, vid, pid, mode=0, interface=1,
index=0, frequency=1.0E5):
self.usb_read_timeout = 5000
# Ack property
self.rack = 0
# Start/stop status
self.status = self.STOPPED
# Open the mpsse
self.open_mpsse(vendor=vid,
product=pid,
interface=interface,
index=index,
frequency=frequency)
# Finish setup
self._set_mode()
# Start condition
def Start(self):
status = self.MPSSE_OK
# I2C repeated start condition
if self.status == self.STARTED:
status |= self._set_bits_low((self.pidle & ~self.SK))
# Set pins to idle
status |= self._set_bits_low(self.pidle)
# Set start condition
status |= self._set_bits_low(self.pstart)
self.status = self.STARTED
return status
# Stop condition
def Stop(self):
retval = self.MPSSE_OK
retval |= self._set_bits_low((self.pidle & ~self.DO & ~self.SK))
retval |= self._set_bits_low(self.pstop)
if retval == self.MPSSE_OK:
# Pins to idle
retval |= self._set_bits_low(self.pidle)
self.status = self.STOPPED
return retval
# Write in bytes, input MSB
def Write(self, data):
n = 0
# transfer size of I2C is 1
txsize = 1
retval = self.MPSSE_FAIL
size = len(data)
while n < size:
buf = self._build_block_buffer(self.tx, data[n:n+txsize], txsize)
retval = self._ftdi_raw_write(buf)
n += txsize
if retval == self.MPSSE_FAIL:
break
# Read in the ACK bit and store it in self.rack
buf = Array('B')
t, buf = self._ftdi_raw_read(buf, 1)
self.rack = buf[0]
if retval == self.MPSSE_OK and n == size:
retval = self.MPSSE_OK
else:
retval = self.MPSSE_FAIL
return retval
# Read in bytes, output MSB
def Read(self, size):
buf = self._internal_read(size)
return buf
# Ack returned?
def GetAck(self):
return self.rack & 0x01
def SetAck(self, ack):
if ack == self.NACK:
self.tack = 0xFF
else:
self.tack = 0x00
def SendAcks(self):
self.SetAck(self.ACK)
def SendNacks(self):
self.SetAck(self.NACK)
# Close the I2C when done
def Close(self):
self.set_bitmode(0, self.BITMODE_RESET)
self.close()
# Set the low bit pins high/low
def _set_bits_low(self, port):
buf = Array('B')
buf.append(self.SET_BITS_LOW)
buf.append(port)
buf.append(self.tris)
return self._ftdi_raw_write(buf)
# Part of the setup
def _set_mode(self):
retval = self.MPSSE_OK
setup_commands = Array('B')
self.write_data_set_chunksize(65535)
# Set tx and rx
self.tx = self.MPSSE_DO_WRITE | self.ENDIANESS
self.rx = self.MPSSE_DO_READ | self.ENDIANESS
self.txrx = self.MPSSE_DO_WRITE | self.MPSSE_DO_READ | self.ENDIANESS
# Clock, data out, chip select pins are outputs; all others are inputs.
self.tris = self.DEFAULT_TRIS | self.CS
# Clock and chip select pins idle high; all others are low
self.pidle = self.DEFAULT_PORT | self.CS
self.pstart = self.DEFAULT_PORT | self.CS
self.pstop = self.DEFAULT_PORT | self.CS
# During reads and writes the chip select pin is brought low
self.pstart &= ~self.CS
# Send ACKs by default , set tack to 0x00. or 0xFF
self.tack = 0x00
# Ensure adaptive clock is disabled
setup_commands.append(self.DISABLE_ADAPTIVE_CLOCK)
# I2C configurations on pins:
# Send on falling clock edge and read data on falling (or rising) clock edge
self.tx |= self.MPSSE_WRITE_NEG
self.rx &= ~self.MPSSE_READ_NEG
# Both the clock and the data lines are idle high
self.pidle |= self.DO | self.DI
# Start bit == data line goes from high to low while clock line is high
self.pstart &= ~self.DO & ~self.DI
# Stop bit == data line goes from low to high while clock line is high
# - set data line low here, so the transition to the idle state triggers the stop condition.
self.pstop &= ~self.DO & ~self.DI
# Enable three phase clock, data to be available on both rising and falling clock edges
setup_commands.append(self.ENABLE_3_PHASE_CLOCK)
setup_commands_size = len(setup_commands)
# Send any setup commands to the chip
if(retval == self.MPSSE_OK) and (setup_commands_size > 0):
retval = self._ftdi_raw_write(setup_commands)
if retval == self.MPSSE_OK:
# Set the idle pin states
self._set_bits_low(self.pidle)
# All GPIO pins are outputs, set low
self.trish = 0xFF
self.gpioh = 0x00
buf = Array('B')
buf.append(self.SET_BITS_HIGH)
buf.append(self.gpioh)
buf.append(self.trish)
retval = self._ftdi_raw_write(buf)
return retval
# Package to send to chip
def _build_block_buffer(self, cmd, data, size):
buf = Array('B')
k = 0
for j in range(0, size):
# Clock pin set low prior to clocking data
buf.append(self.SET_BITS_LOW)
buf.append(self.pstart & ~self.SK)
if cmd == self.rx:
buf.append(self.tris & ~self.DO)
else:
buf.append(self.tris)
buf.append(cmd)
buf.append(0)
if not (cmd & self.MPSSE_BITMODE):
buf.append(0)
# append data input only if write
if cmd == self.tx or cmd == self.txrx:
buf.append(ord(data[k]))
k += 1
# In I2C mode clock one ACK bit
if cmd == self.rx:
buf.append(self.SET_BITS_LOW)
buf.append(self.pstart & ~self.SK)
buf.append(self.tris)
buf.append(self.tx | self.MPSSE_BITMODE)
buf.append(0)
buf.append(self.tack)
elif cmd == self.tx:
buf.append(self.SET_BITS_LOW)
buf.append(self.pstart & ~self.SK)
buf.append(self.tris & ~self.DO)
buf.append(self.rx | self.MPSSE_BITMODE)
buf.append(0)
buf.append(self.SEND_IMMEDIATE)
return buf
def _internal_read(self, size):
n = 0
buf = Array('B')
while n < size:
rxsize = size - n
rxsize - min(self.I2C_TRANSFER_SIZE, rxsize)
# buf not used by build_block when reading
data = self._build_block_buffer(self.rx, buf, rxsize)
retval = self._ftdi_raw_write(data)
if retval == self.MPSSE_OK:
t, buf = self._ftdi_raw_read(buf, rxsize)
if t == 0:
raise Exception("Corrupt Read")
n += t
else:
break
return buf
# Write data to the FTDI chip
def _ftdi_raw_write(self, buf):
if self.write_data(buf) == len(buf):
return self.MPSSE_OK
else:
return self.MPSSE_FAIL
# Read data from the FTDI chip
def _ftdi_raw_read(self, buf, size):
n = 0
prev = -1
while n < size:
str_buf = self.read_data(size)
for s in str_buf:
buf.append(ord(s))
r = len(buf)
if r < 0:
break
# detect if hanging
elif r == 0:
if prev == r:
return 0, buf
else:
prev = r
n += r
return n, buf