mirror of
https://github.com/google/pebble.git
synced 2025-03-15 08:41:21 +00:00
195 lines
7.2 KiB
Bash
Executable file
195 lines
7.2 KiB
Bash
Executable file
#!/bin/bash
|
|
|
|
# Copyright 2014-2016 Samsung Electronics Co., Ltd.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
ITERS="$1"
|
|
ENGINE="$2"
|
|
BENCHMARK="$3"
|
|
PRINT_MIN="$4"
|
|
OS=`uname -s | tr [:upper:] [:lower:]`
|
|
|
|
if [ "$OS" == "darwin" ]
|
|
then
|
|
time_regexp='s/user[ ]*\([0-9]*\)m\([0-9.]*\)s/\1 \2/g'
|
|
else
|
|
time_regexp='s/user[ \t]*\([0-9]*\)m\([0-9.]*\)s/\1 \2/g'
|
|
fi
|
|
|
|
perf_values=$( (( for i in `seq 1 1 $ITERS`; do time $ENGINE "$BENCHMARK"; if [ $? -ne 0 ]; then exit 1; fi; done ) 2>&1 ) | \
|
|
grep user | \
|
|
sed "$time_regexp" | \
|
|
awk '{ print ($1 * 60 + $2); }';
|
|
if [ ${PIPESTATUS[0]} -ne 0 ]; then exit 1; fi; );
|
|
|
|
if [ "$PRINT_MIN" == "-min" ]
|
|
then
|
|
perf_values=$( echo "$perf_values" | \
|
|
awk "BEGIN {
|
|
min_v = -1;
|
|
}
|
|
{
|
|
if (min_v == -1 || $1 < min_v) {
|
|
min_v = $1;
|
|
}
|
|
}
|
|
END {
|
|
print min_v
|
|
}" || exit 1;
|
|
);
|
|
calc_status=$?
|
|
else
|
|
perf_values=$( echo "$perf_values" | \
|
|
awk "BEGIN {
|
|
n = 0
|
|
}
|
|
{
|
|
n++
|
|
a[n] = \$1
|
|
}
|
|
END {
|
|
#
|
|
# Values of 99% quantiles of two-sided t-distribution for given number of degrees of freedom
|
|
#
|
|
t_gamma_n_m1 [1] = 63.657
|
|
t_gamma_n_m1 [2] = 9.9248
|
|
t_gamma_n_m1 [3] = 5.8409
|
|
t_gamma_n_m1 [4] = 4.6041
|
|
t_gamma_n_m1 [5] = 4.0321
|
|
t_gamma_n_m1 [6] = 3.7074
|
|
t_gamma_n_m1 [7] = 3.4995
|
|
t_gamma_n_m1 [8] = 3.3554
|
|
t_gamma_n_m1 [9] = 3.2498
|
|
t_gamma_n_m1 [10] = 3.1693
|
|
t_gamma_n_m1 [11] = 3.1058
|
|
t_gamma_n_m1 [12] = 3.0545
|
|
t_gamma_n_m1 [13] = 3.0123
|
|
t_gamma_n_m1 [14] = 2.9768
|
|
t_gamma_n_m1 [15] = 2.9467
|
|
t_gamma_n_m1 [16] = 2.9208
|
|
t_gamma_n_m1 [17] = 2.8982
|
|
t_gamma_n_m1 [18] = 2.8784
|
|
t_gamma_n_m1 [19] = 2.8609
|
|
t_gamma_n_m1 [20] = 2.8453
|
|
t_gamma_n_m1 [21] = 2.8314
|
|
t_gamma_n_m1 [22] = 2.8188
|
|
t_gamma_n_m1 [23] = 2.8073
|
|
t_gamma_n_m1 [24] = 2.7969
|
|
t_gamma_n_m1 [25] = 2.7874
|
|
t_gamma_n_m1 [26] = 2.7787
|
|
t_gamma_n_m1 [27] = 2.7707
|
|
t_gamma_n_m1 [28] = 2.7633
|
|
t_gamma_n_m1 [29] = 2.7564
|
|
t_gamma_n_m1 [30] = 2.75
|
|
t_gamma_n_m1 [31] = 2.744
|
|
t_gamma_n_m1 [32] = 2.7385
|
|
t_gamma_n_m1 [33] = 2.7333
|
|
t_gamma_n_m1 [34] = 2.7284
|
|
t_gamma_n_m1 [35] = 2.7238
|
|
t_gamma_n_m1 [36] = 2.7195
|
|
t_gamma_n_m1 [37] = 2.7154
|
|
t_gamma_n_m1 [38] = 2.7116
|
|
t_gamma_n_m1 [39] = 2.7079
|
|
t_gamma_n_m1 [40] = 2.7045
|
|
t_gamma_n_m1 [41] = 2.7012
|
|
t_gamma_n_m1 [42] = 2.6981
|
|
t_gamma_n_m1 [43] = 2.6951
|
|
t_gamma_n_m1 [44] = 2.6923
|
|
t_gamma_n_m1 [45] = 2.6896
|
|
t_gamma_n_m1 [46] = 2.687
|
|
t_gamma_n_m1 [47] = 2.6846
|
|
t_gamma_n_m1 [48] = 2.6822
|
|
t_gamma_n_m1 [49] = 2.68
|
|
t_gamma_n_m1 [50] = 2.6778
|
|
|
|
#
|
|
# Sort array of measurements
|
|
#
|
|
for (i = 2; i <= n; i++) {
|
|
j = i
|
|
k = a [j]
|
|
while (j > 1 && a [j - 1] > k) {
|
|
a [j] = a [j - 1]
|
|
j--
|
|
}
|
|
a [j] = k
|
|
}
|
|
|
|
#
|
|
# Remove 20% of lowest and 20% of highest values
|
|
#
|
|
n_20_percent = int (n / 5)
|
|
|
|
for (i = 1; i <= n_20_percent; i++) {
|
|
delete a[n]
|
|
n--
|
|
}
|
|
|
|
for (i = 1; i <= n - n_20_percent; i++) {
|
|
a[i] = a[i + n_20_percent]
|
|
}
|
|
|
|
n -= n_20_percent
|
|
|
|
#
|
|
# Calculate average
|
|
#
|
|
sum = 0
|
|
for (i = 1; i <= n; i++) {
|
|
sum += a[i]
|
|
}
|
|
|
|
avg = sum / n
|
|
|
|
if (n > 1) {
|
|
if (n - 1 <= 50) {
|
|
t_coef = t_gamma_n_m1 [n - 1]
|
|
} else {
|
|
# For greater degrees of freedom, values of corresponding quantiles
|
|
# are insignificantly less than the value.
|
|
#
|
|
# For example, the value for infinite number of freedoms is 2.5758
|
|
#
|
|
# So, to reduce table size, we take this, greater value,
|
|
# overestimating inaccuracy for no more than 4%.
|
|
#
|
|
t_coef = t_gamma_n_m1 [50]
|
|
}
|
|
|
|
#
|
|
# Calculate inaccuracy estimation
|
|
#
|
|
sum_delta_squares = 0
|
|
for (i = 1; i <= n; i++) {
|
|
sum_delta_squares += (avg - a[i]) ^ 2
|
|
}
|
|
|
|
delta = t_coef * sqrt (sum_delta_squares / (n * (n - 1)))
|
|
|
|
print avg, delta
|
|
} else {
|
|
print avg
|
|
}
|
|
}
|
|
" || exit 1;
|
|
);
|
|
calc_status=$?
|
|
fi
|
|
|
|
echo "$perf_values"
|
|
|
|
if [ $? -ne 0 ];
|
|
then
|
|
exit 1;
|
|
fi;
|