pebble/platform/tintin/boot/src/main.c
2025-01-27 11:38:16 -08:00

523 lines
15 KiB
C

/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <inttypes.h>
#include "board/board.h"
#include "boot_tests.h"
#include "drivers/button.h"
#include "drivers/dbgserial.h"
#include "drivers/display.h"
#include "drivers/flash.h"
#include "drivers/periph_config.h"
#include "drivers/rtc.h"
#include "drivers/watchdog.h"
#include "firmware.h"
#include "fw_copy.h"
#include "pebble_errors.h"
#include "standby.h"
#include "system/bootbits.h"
#include "system/reset.h"
#include "util/delay.h"
#include "stm32f2xx.h"
static const uint8_t SELECT_BUTTON_MASK = 0x4;
bool firmware_is_new_world(void* base) {
uint32_t* fw_base = base;
if (fw_base == NULL) {
fw_base = (uint32_t*)FIRMWARE_NEWWORLD_BASE;
}
if (fw_base[0] == 0xFFFFFFFF ||
fw_base[1] == 0xFFFFFFFF) { // Erased flash
return false;
}
if (fw_base[FW_IDENTIFIER_OFFSET / sizeof(uint32_t)] != 0x4E65576F) { // NeWo
return false;
}
// TODO: Additional checks?
return true;
}
static void prv_get_fw_reset_vector(void **reset_handler,
void **initial_stack_pointer) {
void** fw_vector_table;
if (firmware_is_new_world(NULL)) {
fw_vector_table = (void**) FIRMWARE_NEWWORLD_BASE;
} else {
fw_vector_table = (void**) FIRMWARE_OLDWORLD_BASE;
}
*initial_stack_pointer = fw_vector_table[0];
*reset_handler = fw_vector_table[1];
}
static void prv_hw_reset(void) {
// Disable all interrupts, just in case.
for (int i = 0; i < 8; ++i) {
// Interrupt Clear-Enable Register
NVIC->ICER[i] = 0xFFFFFFFF;
// Interrupt Clear-Pending Register
NVIC->ICPR[i] = 0xFFFFFFFF;
}
// Set the peripheral clock enable registers to their reset values as
// specified in the reference manual.
RCC->AHB1ENR = 0;
RCC->AHB2ENR = 0;
RCC->AHB3ENR = 0;
RCC->APB1ENR = 0;
RCC->APB2ENR = 0;
// Reset most peripherals used by the bootloader. We want to minimize the
// chances that the firmware unintentionally relies on some state that the
// bootloader leaves behind. This includes disabling the PLL.
// GPIOs are not reset here: resetting them would change their output values,
// which could unintentionally modify peripherals (such as the display).
// The backup domain is not reset; that would be foolish.
RCC_DeInit();
// Reset flags for each bus taken from reset register lists in reference manual
// starting with 5.3.5 "RCC AHB1 peripheral reset register"
const uint32_t ahb1_periphs = 0
| RCC_AHB1Periph_CRC
| RCC_AHB1Periph_DMA1
| RCC_AHB1Periph_DMA2
| RCC_AHB1Periph_ETH_MAC
| RCC_AHB1Periph_OTG_HS;
RCC_AHB1PeriphResetCmd(ahb1_periphs, ENABLE);
RCC_AHB1PeriphResetCmd(ahb1_periphs, DISABLE);
const uint32_t ahb2_periphs = 0
| RCC_AHB2Periph_DCMI
| RCC_AHB2Periph_CRYP
| RCC_AHB2Periph_HASH
| RCC_AHB2Periph_RNG
| RCC_AHB2Periph_OTG_FS;
RCC_AHB2PeriphResetCmd(ahb2_periphs, ENABLE);
RCC_AHB2PeriphResetCmd(ahb2_periphs, DISABLE);
const uint32_t ahb3_periphs = 0
| RCC_AHB3Periph_FSMC;
RCC_AHB3PeriphResetCmd(ahb3_periphs, ENABLE);
RCC_AHB3PeriphResetCmd(ahb3_periphs, DISABLE);
const uint32_t apb1_periphs = 0
| RCC_APB1Periph_TIM2
| RCC_APB1Periph_TIM3
| RCC_APB1Periph_TIM4
| RCC_APB1Periph_TIM5
| RCC_APB1Periph_TIM6
| RCC_APB1Periph_TIM7
| RCC_APB1Periph_TIM12
| RCC_APB1Periph_TIM13
| RCC_APB1Periph_TIM14
| RCC_APB1Periph_WWDG
| RCC_APB1Periph_SPI2
| RCC_APB1Periph_SPI3
| RCC_APB1Periph_USART2
| RCC_APB1Periph_USART3
| RCC_APB1Periph_UART4
| RCC_APB1Periph_UART5
| RCC_APB1Periph_I2C1
| RCC_APB1Periph_I2C2
| RCC_APB1Periph_I2C3
| RCC_APB1Periph_CAN1
| RCC_APB1Periph_CAN2
| RCC_APB1Periph_PWR
| RCC_APB1Periph_DAC;
RCC_APB1PeriphResetCmd(apb1_periphs, ENABLE);
RCC_APB1PeriphResetCmd(apb1_periphs, DISABLE);
const uint32_t apb2_periphs = 0
| RCC_APB2Periph_TIM1
| RCC_APB2Periph_TIM8
| RCC_APB2Periph_USART1
| RCC_APB2Periph_USART6
| RCC_APB2Periph_ADC
| RCC_APB2Periph_SDIO
| RCC_APB2Periph_SPI1
| RCC_APB2Periph_SYSCFG
| RCC_APB2Periph_TIM9
| RCC_APB2Periph_TIM10
| RCC_APB2Periph_TIM11;
RCC_APB2PeriphResetCmd(apb2_periphs, ENABLE);
RCC_APB2PeriphResetCmd(apb2_periphs, DISABLE);
}
static void __attribute__((noreturn)) prv_jump_to_fw(void) {
void *initial_stack_pointer, *reset_handler;
prv_get_fw_reset_vector(&reset_handler, &initial_stack_pointer);
dbgserial_print("Booting firmware @ ");
dbgserial_print_hex((uintptr_t)reset_handler);
dbgserial_newline();
dbgserial_newline();
prv_hw_reset();
// The Cortex-M user guide states that the reset values for the core registers
// are as follows:
// R0-R12 = Unknown
// MSP = VECTOR_TABLE[0] (main stack pointer)
// PSP = Unknown (process stack pointer)
// LR = 0xFFFFFFFF
// PC = VECTOR_TABLE[1]
// PRIMASK = 0x0
// FAULTMASK = 0x0
// BASEPRI = 0x0
// CONTROL = 0x0
//
// Attempt to put the processor into as close to the reset state as possible
// before passing control to the firmware.
//
// No attempt is made to set CONTROL to zero as it should already be set to
// the reset value when this code executes.
__asm volatile (
"cpsie if\n" // Clear PRIMASK and FAULTMASK
"mov lr, 0xFFFFFFFF\n"
"mov sp, %[initial_sp]\n"
"bx %[reset_handler]\n"
: : [initial_sp] "r" (initial_stack_pointer),
[reset_handler] "r" (reset_handler)
);
__builtin_unreachable();
}
static bool prv_check_and_increment_reset_loop_detection_bits(void) {
uint8_t counter =
(boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_THREE) << 2) |
(boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_TWO) << 1) |
boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_ONE);
switch (++counter) {
case 1:
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
break;
case 2:
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_TWO);
break;
case 3:
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
break;
case 4:
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_TWO);
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_THREE);
break;
case 5:
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
break;
case 6:
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_TWO);
break;
case 7:
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
break;
default:
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_TWO);
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_THREE);
return true;
}
return false;
}
static bool prv_check_for_recovery_start_failure() {
return boot_bit_test(BOOT_BIT_RECOVERY_START_IN_PROGRESS);
}
static bool prv_check_for_fw_start_failure() {
// Add more failure conditions here.
if (!watchdog_check_reset_flag() && !boot_bit_test(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED)) {
// We're good, we're just starting normally.
dbgserial_putstr("Booting normally");
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
return false;
}
// We failed to start our firmware successfully!
if (watchdog_check_reset_flag()) {
dbgserial_putstr("Watchdog caused a reset");
}
if (boot_bit_test(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED)) {
dbgserial_putstr("Software failure caused a reset");
}
// Clean up after the last failure.
boot_bit_clear(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED);
// We have a "three strikes" algorithm: if the watch fails three times, return true
// to tell the parent we should load the recovery firmware. A reset for any other reason
// will reset this algorithm.
if (boot_bit_test(BOOT_BIT_FW_START_FAIL_STRIKE_TWO)) {
// Yikes, our firmware is screwed. Boot into recovery mode.
dbgserial_putstr("Boot failed, strike 3");
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
return true;
} else if (boot_bit_test(BOOT_BIT_FW_START_FAIL_STRIKE_ONE)) {
dbgserial_putstr("Boot failed, strike 2");
boot_bit_set(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
} else {
dbgserial_putstr("Boot failed, strike 1");
boot_bit_set(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
}
return false;
}
static bool prv_check_force_boot_recovery(void) {
if (boot_bit_test(BOOT_BIT_FORCE_PRF)) {
boot_bit_clear(BOOT_BIT_FORCE_PRF);
return true;
}
if (button_is_pressed(BUTTON_ID_UP) && button_is_pressed(BUTTON_ID_BACK)) {
dbgserial_putstr("Hold down UP + BACK for 5 secs. to force-boot PRF");
for (int i = 0; i < 5000; ++i) {
if (!(button_is_pressed(BUTTON_ID_UP) && button_is_pressed(BUTTON_ID_BACK))) {
// stop waiting if not held down any longer
return false;
}
delay_ms(1);
}
return true;
}
void *reset_vector, *initial_sp;
prv_get_fw_reset_vector(&reset_vector, &initial_sp);
if ((uintptr_t)reset_vector == 0xffffffff ||
(uintptr_t)initial_sp == 0xffffffff) {
dbgserial_putstr("Firmware is erased");
return true;
}
return false;
}
static void prv_sad_watch(uint32_t error_code) {
dbgserial_print("SAD WATCH: ");
dbgserial_print_hex(error_code);
dbgserial_newline();
display_error_code(error_code);
static uint8_t prev_button_state = 0;
prev_button_state = button_get_state_bits() & ~SELECT_BUTTON_MASK;
while (1) {
// See if we should restart
uint8_t button_state = button_get_state_bits() & ~SELECT_BUTTON_MASK;
if (button_state != prev_button_state) {
system_reset();
}
delay_ms(10);
}
}
static void prv_print_reset_reason(void) {
dbgserial_print("Reset Register ");
dbgserial_print_hex(RCC->CSR);
dbgserial_newline();
if (RCC_GetFlagStatus(RCC_FLAG_BORRST) == SET) {
dbgserial_putstr("Brown out reset");
}
}
// SystemInit does this for the firmware, but since the bootloader isn't using
// the vendor SystemInit, initialize the flash cache here
static void prv_configure_system_flash(void) {
// Enable flash instruction and data caches
FLASH->ACR = FLASH_ACR_ICEN | FLASH_ACR_DCEN;
}
// RTC and bootbit assume access to the backup
// registers has been enabled
static void prv_enable_backup_access() {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
PWR_BackupAccessCmd(ENABLE); // Disable write-protect on RTC_BKP_x registers
}
void boot_main(void) {
prv_configure_system_flash();
prv_enable_backup_access();
dbgserial_init();
prv_print_reset_reason();
boot_bit_init();
if (!rtc_init()) {
// Need to initialize the display in this
// case so we can see the sad watch
display_init();
prv_sad_watch(ERROR_CANT_START_LSE);
}
// Standby checks need to know the button pressed state
button_init();
// On tintin the bootloader handles entering and leaving standby manually
if (boot_bit_test(BOOT_BIT_STANDBY_MODE_REQUESTED)) {
boot_bit_clear(BOOT_BIT_STANDBY_MODE_REQUESTED);
enter_standby_mode();
} else if (PWR_GetFlagStatus(PWR_FLAG_SB) == SET) { // Woke up from standby
// Clear the standby flag since only a power reset clears it
PWR_ClearFlag(PWR_FLAG_SB);
// Before coming out of standby make sure we should be waking up
if (should_leave_standby_mode()) {
leave_standby_mode();
} else {
dbgserial_putstr("returning to standby");
enter_standby_mode();
}
dbgserial_putstr("leaving standby");
} else {
// If not entering or leaving standby this is a cold boot. The firmware
// expects the clock to be running in fast mode
rtc_initialize_fast_mode();
}
// Print out our super cool bootloader logo:
// ______ __
// /_ __/ __/ /_
// / / /_ __/
// /_/ /_/
dbgserial_putstr(" ______ __\r\n/_ __/ __/ /\r\n / / /_ __/\r\n/_/ /_/\r\n");
boot_version_write();
// Write the bootloader version to serial-out
dbgserial_print("Bootloader version: ");
dbgserial_print_hex(boot_version_read());
dbgserial_newline();
if (boot_bit_test(BOOT_BIT_FW_STABLE)) {
dbgserial_putstr("Last firmware boot was stable; clear strikes");
boot_bit_clear(BOOT_BIT_FW_STABLE);
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
boot_bit_clear(BOOT_BIT_RECOVERY_LOAD_FAIL_STRIKE_ONE);
boot_bit_clear(BOOT_BIT_RECOVERY_LOAD_FAIL_STRIKE_TWO);
}
display_init();
display_boot_splash();
#ifdef DISPLAY_DEMO_LOOP
while (1) {
display_boot_splash();
delay_us(1000000);
for (int i=0; i <= 91; ++i) {
display_firmware_update_progress(i, 91);
delay_us(80000);
}
for (uint32_t i=0; i <= 0xf; ++i) {
display_error_code(i * 0x11111111);
delay_us(200000);
}
for (uint32_t i=0; i < 8; ++i) {
for (uint32_t j=1; j <= 0xf; ++j) {
display_error_code(j << (i*4));
delay_us(200000);
}
}
display_error_code(0x01234567);
delay_us(200000);
display_error_code(0x89abcdef);
delay_us(200000);
display_error_code(0xcafebabe);
delay_us(200000);
display_error_code(0xfeedface);
delay_us(200000);
display_error_code(0x8badf00d);
delay_us(200000);
display_error_code(0xbad1ce40);
delay_us(200000);
display_error_code(0xbeefcace);
delay_us(200000);
display_error_code(0x0defaced);
delay_us(200000);
display_error_code(0xd15ea5e5);
delay_us(200000);
display_error_code(0xdeadbeef);
delay_us(200000);
}
#endif
flash_init();
if (is_button_stuck()) {
prv_sad_watch(ERROR_STUCK_BUTTON);
}
if (is_flash_broken()) {
prv_sad_watch(ERROR_BAD_SPI_FLASH);
}
boot_bit_dump();
// If the recovery firmware crashed at start-up, the watch is now a
// $150 brick. That's life!
if (prv_check_for_recovery_start_failure()) {
boot_bit_clear(BOOT_BIT_RECOVERY_START_IN_PROGRESS);
prv_sad_watch(ERROR_CANT_LOAD_FW);
}
bool force_boot_recovery_mode = prv_check_force_boot_recovery();
if (force_boot_recovery_mode) {
dbgserial_putstr("Force-booting recovery mode...");
}
if (force_boot_recovery_mode || prv_check_for_fw_start_failure()) {
if (!switch_to_recovery_fw()) {
// We've failed to load recovery mode too many times.
prv_sad_watch(ERROR_CANT_LOAD_FW);
}
} else {
check_update_fw();
}
if (prv_check_and_increment_reset_loop_detection_bits()) {
prv_sad_watch(ERROR_RESET_LOOP);
}
watchdog_init();
#ifndef NO_WATCHDOG
watchdog_start();
#endif
prv_jump_to_fw();
}