pebble/src/fw/drivers/i2c.c
2025-01-27 11:38:16 -08:00

603 lines
18 KiB
C

/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "i2c.h"
#include "i2c_definitions.h"
#include "i2c_hal.h"
#include "board/board.h"
#include "drivers/gpio.h"
#include "drivers/periph_config.h"
#include "drivers/rtc.h"
#include "FreeRTOS.h"
#include "kernel/pbl_malloc.h"
#include "os/tick.h"
#include "kernel/util/sleep.h"
#include "kernel/util/stop.h"
#include "os/mutex.h"
#include "semphr.h"
#include "services/common/analytics/analytics.h"
#include "system/logging.h"
#include "system/passert.h"
#include "util/size.h"
#if CAPABILITY_HAS_PMIC
#include "drivers/pmic.h"
#endif
#include <inttypes.h>
#define STM32F2_COMPATIBLE
#define STM32F4_COMPATIBLE
#define STM32F7_COMPATIBLE
#include <mcu.h>
#define I2C_ERROR_TIMEOUT_MS (1000)
#define I2C_TIMEOUT_ATTEMPTS_MAX (2 * 1000 * 1000)
// MFI NACKs while busy. We delay ~1ms between retries so this is approximately a 1000ms timeout.
// The longest operation of the MFi chip is "start signature generation", which seems to take
// 223-224 NACKs, but sometimes for unknown reasons it can take much longer.
#define I2C_NACK_COUNT_MAX (1000)
typedef enum {
Read,
Write
} TransferDirection;
typedef enum {
SendRegisterAddress, // Send a register address, followed by a repeat start for reads
NoRegisterAddress // Do not send a register address
} TransferType;
static uint32_t s_max_transfer_duration_ticks;
static void prv_analytics_track_i2c_error(void);
/*----------------SEMAPHORE/LOCKING FUNCTIONS--------------------------*/
static bool prv_semaphore_take(I2CBusState *bus) {
return (xSemaphoreTake(bus->event_semaphore, 0) == pdPASS);
}
static bool prv_semaphore_wait(I2CBusState *bus) {
TickType_t timeout_ticks = milliseconds_to_ticks(I2C_ERROR_TIMEOUT_MS);
return (xSemaphoreTake(bus->event_semaphore, timeout_ticks) == pdPASS);
}
static void prv_semaphore_give(I2CBusState *bus) {
// If this fails, something is very wrong
(void)xSemaphoreGive(bus->event_semaphore);
}
static portBASE_TYPE prv_semaphore_give_from_isr(I2CBusState *bus) {
portBASE_TYPE should_context_switch = pdFALSE;
(void)xSemaphoreGiveFromISR(bus->event_semaphore, &should_context_switch);
return should_context_switch;
}
/*-------------------BUS/PIN CONFIG FUNCTIONS--------------------------*/
// FIXME: These rail control functions should be moved to board-specific implementations
// https://pebbletechnology.atlassian.net/browse/PBL-32232
#if CAPABILITY_HAS_PMIC
void i2c_rail_ctl_pmic(I2CBus *bus, bool enable) {
set_ldo3_power_state(enable);
}
#endif
void i2c_rail_ctl_pin(I2CBus *bus, bool enable) {
gpio_output_set(&bus->rail_gpio, enable);
}
static void prv_rail_ctl(I2CBus *bus, bool enable) {
bus->rail_ctl_fn(bus, enable);
if (enable) {
// FIXME: The power tracking data is going to be bogus for any board with more than one bus
// with controllable power.
// https://pebbletechnology.atlassian.net/browse/PBL-32232 should address this
power_tracking_start(PowerSystem2v5Reg);
// wait for the bus supply to stabilize and the peripherals to start up.
// the MFI chip requires its reset pin to be stable for at least 10ms from startup.
psleep(20);
} else {
power_tracking_stop(PowerSystem2v5Reg);
}
}
//! Power down I2C bus power supply
//! Always lock bus and peripheral config access before use
static void prv_bus_rail_power_down(I2CBus *bus) {
if (!bus->rail_ctl_fn) {
return;
}
prv_rail_ctl(bus, false);
// Drain through pull-ups
OutputConfig out_scl = {
.gpio = bus->scl_gpio.gpio,
.gpio_pin = bus->scl_gpio.gpio_pin,
.active_high = true
};
gpio_output_init(&out_scl, GPIO_PuPd_NOPULL, GPIO_Speed_2MHz);
gpio_output_set(&out_scl, false);
OutputConfig out_sda = {
.gpio = bus->sda_gpio.gpio,
.gpio_pin = bus->sda_gpio.gpio_pin,
.active_high = true
};
gpio_output_init(&out_sda, GPIO_PuPd_NOPULL, GPIO_Speed_2MHz);
gpio_output_set(&out_sda, false);
bus->state->last_rail_stop_ticks = rtc_get_ticks();
}
//! Configure bus pins for use by I2C peripheral
//! Lock bus and peripheral config access before configuring pins
static void prv_bus_pins_cfg_i2c(I2CBus *bus) {
gpio_af_init(&bus->scl_gpio, GPIO_OType_OD, GPIO_Speed_50MHz, GPIO_PuPd_NOPULL);
gpio_af_init(&bus->sda_gpio, GPIO_OType_OD, GPIO_Speed_50MHz, GPIO_PuPd_NOPULL);
}
static void prv_bus_pins_cfg_input(I2CBus *bus) {
InputConfig in_scl = {
.gpio = bus->scl_gpio.gpio,
.gpio_pin = bus->scl_gpio.gpio_pin,
};
gpio_input_init(&in_scl);
InputConfig in_sda = {
.gpio = bus->sda_gpio.gpio,
.gpio_pin = bus->sda_gpio.gpio_pin,
};
gpio_input_init(&in_sda);
}
//! Power up I2C bus power supply
//! Always lock bus and peripheral config access before use
static void prv_bus_rail_power_up(I2CBus *bus) {
if (!bus->rail_ctl_fn) {
return;
}
static const uint32_t MIN_STOP_TIME_MS = 10;
// check that at least enough time has elapsed since the last turn-off
RtcTicks time_stopped_ms =
((rtc_get_ticks() - bus->state->last_rail_stop_ticks) * RTC_TICKS_HZ) / 1000;
I2C_DEBUG("Bus %s rail start after a delay of %"PRIu32"ms", bus->name,
(uint32_t)time_stopped_ms);
if (time_stopped_ms < MIN_STOP_TIME_MS) {
I2C_DEBUG("Waiting %"PRIu32"ms before enabling I2C bus %s rail.",
(uint32_t)(MIN_STOP_TIME_MS - time_stopped_ms), bus->name);
psleep(MIN_STOP_TIME_MS - time_stopped_ms);
}
prv_bus_pins_cfg_input(bus);
prv_rail_ctl(bus, true);
}
//! Configure the bus pins, enable the peripheral clock and initialize the I2C peripheral.
//! Always lock the bus and peripheral config access before enabling it
static void prv_bus_enable(I2CBus *bus) {
// Don't power up rail if the bus is already in use (enable can be called to reset bus)
if (bus->state->user_count == 0) {
prv_bus_rail_power_up(bus);
}
prv_bus_pins_cfg_i2c(bus);
i2c_hal_enable(bus);
}
//! De-initialize and gate the clock to the peripheral
//! Power down rail if the bus supports that and no devices are using it
//! Always lock the bus and peripheral config access before disabling it
static void prv_bus_disable(I2CBus *bus) {
i2c_hal_disable(bus);
// Do not de-power rail if there are still devices using bus (just reset peripheral and pin
// configuration during a bus reset)
if (bus->state->user_count == 0) {
prv_bus_rail_power_down(bus);
} else {
prv_bus_pins_cfg_input(bus);
}
}
//! Perform a soft reset of the bus
//! Always lock the bus before reset
static void prv_bus_reset(I2CBus *bus) {
prv_bus_disable(bus);
prv_bus_enable(bus);
}
/*---------------INIT/USE/RELEASE/RESET FUNCTIONS----------------------*/
void i2c_init(I2CBus *bus) {
PBL_ASSERTN(bus);
*bus->state = (I2CBusState) {
.event_semaphore = xSemaphoreCreateBinary(),
.bus_mutex = mutex_create(),
};
// Must give token before one can be taken without blocking
xSemaphoreGive(bus->state->event_semaphore);
i2c_hal_init(bus);
if (bus->rail_gpio.gpio) {
gpio_output_init(&bus->rail_gpio, GPIO_OType_PP, GPIO_Speed_2MHz);
}
prv_bus_rail_power_down(bus);
}
void i2c_use(I2CSlavePort *slave) {
PBL_ASSERTN(slave);
mutex_lock(slave->bus->state->bus_mutex);
if (slave->bus->state->user_count == 0) {
prv_bus_enable(slave->bus);
}
slave->bus->state->user_count++;
mutex_unlock(slave->bus->state->bus_mutex);
}
void i2c_release(I2CSlavePort *slave) {
PBL_ASSERTN(slave);
mutex_lock(slave->bus->state->bus_mutex);
if (slave->bus->state->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted release of disabled bus %s", slave->bus->name);
mutex_unlock(slave->bus->state->bus_mutex);
return;
}
slave->bus->state->user_count--;
if (slave->bus->state->user_count == 0) {
prv_bus_disable(slave->bus);
}
mutex_unlock(slave->bus->state->bus_mutex);
}
void i2c_reset(I2CSlavePort *slave) {
PBL_ASSERTN(slave);
// Take control of bus; only one task may use bus at a time
mutex_lock(slave->bus->state->bus_mutex);
if (slave->bus->state->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted reset of disabled bus %s when still in use by "
"another bus", slave->bus->name);
mutex_unlock(slave->bus->state->bus_mutex);
return;
}
PBL_LOG(LOG_LEVEL_WARNING, "Resetting I2C bus %s", slave->bus->name);
// decrement user count for reset so that if this user is the only user, the
// bus will be powered down during the reset
slave->bus->state->user_count--;
// Reset and reconfigure bus and pins
prv_bus_reset(slave->bus);
// Restore user count
slave->bus->state->user_count++;
mutex_unlock(slave->bus->state->bus_mutex);
}
bool i2c_bitbang_recovery(I2CSlavePort *slave) {
PBL_ASSERTN(slave);
static const int MAX_TOGGLE_COUNT = 10;
static const int TOGGLE_DELAY = 10;
// Protect access to bus
mutex_lock(slave->bus->state->bus_mutex);
if (slave->bus->state->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted bitbang recovery on disabled bus %s", slave->bus->name);
mutex_unlock(slave->bus->state->bus_mutex);
return false;
}
InputConfig in_sda = {
.gpio = slave->bus->sda_gpio.gpio,
.gpio_pin = slave->bus->sda_gpio.gpio_pin,
};
gpio_input_init(&in_sda);
OutputConfig out_scl = {
.gpio = slave->bus->scl_gpio.gpio,
.gpio_pin = slave->bus->scl_gpio.gpio_pin,
.active_high = true
};
gpio_output_init(&out_scl, GPIO_PuPd_NOPULL, GPIO_Speed_2MHz);
gpio_output_set(&out_scl, true);
bool recovered = false;
for (int i = 0; i < MAX_TOGGLE_COUNT; ++i) {
gpio_output_set(&out_scl, false);
psleep(TOGGLE_DELAY);
gpio_output_set(&out_scl, true);
psleep(TOGGLE_DELAY);
if (gpio_input_read(&in_sda)) {
recovered = true;
break;
}
}
if (recovered) {
PBL_LOG(LOG_LEVEL_DEBUG, "I2C Bus %s recovered", slave->bus->name);
} else {
PBL_LOG(LOG_LEVEL_ERROR, "I2C Bus %s still hung after bitbang reset", slave->bus->name);
}
prv_bus_pins_cfg_i2c(slave->bus);
prv_bus_reset(slave->bus);
mutex_unlock(slave->bus->state->bus_mutex);
return recovered;
}
/*--------------------DATA TRANSFER FUNCTIONS--------------------------*/
//! Wait a short amount of time for busy bit to clear
static bool prv_wait_for_not_busy(I2CBus *bus) {
static const int WAIT_DELAY = 10; // milliseconds
if (i2c_hal_is_busy(bus)) {
psleep(WAIT_DELAY);
if (i2c_hal_is_busy(bus)) {
PBL_LOG(LOG_LEVEL_ERROR, "Timed out waiting for bus %s to become non-busy", bus->name);
return false;
}
}
return true;
}
//! Set up and start a transfer to a bus, wait for it to finish and clean up after the transfer
//! has completed
static bool prv_do_transfer(I2CBus *bus, TransferDirection direction, uint16_t device_address,
uint8_t register_address, uint32_t size, uint8_t *data,
TransferType type) {
// Take control of bus; only one task may use bus at a time
mutex_lock(bus->state->bus_mutex);
if (bus->state->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted access to disabled bus %s", bus->name);
mutex_unlock(bus->state->bus_mutex);
return false;
}
// Disable stop mode while the I2C transfer is in progress - stop mode disables I2C peripheral
stop_mode_disable(bus->stop_mode_inhibitor);
// If bus is busy (it shouldn't be as this function waits for the bus to report a non-idle state
// before exiting) reset the bus and wait for it to become not-busy
// Exit if bus remains busy. User module should reset the I2C module at this point
if (i2c_hal_is_busy(bus)) {
prv_bus_reset(bus);
if (!prv_wait_for_not_busy(bus)) {
// Bus did not recover after reset
stop_mode_enable(bus->stop_mode_inhibitor);
mutex_unlock(bus->state->bus_mutex);
PBL_LOG(LOG_LEVEL_ERROR, "I2C bus did not recover after reset (%s)", bus->name);
prv_analytics_track_i2c_error();
return false;
}
}
// Take binary semaphore so that next take will block
PBL_ASSERT(prv_semaphore_take(bus->state), "Could not acquire semaphore token");
// Set up transfer
bus->state->transfer = (I2CTransfer) {
.device_address = device_address,
.register_address = register_address,
.direction = direction,
.type = type,
.size = size,
.idx = 0,
.data = data,
};
i2c_hal_init_transfer(bus);
bus->state->transfer_nack_count = 0;
bus->state->transfer_start_ticks = rtc_get_ticks();
bool result = false;
bool complete = false;
do {
i2c_hal_start_transfer(bus);
// Wait on semaphore until it is released by interrupt or a timeout occurs
if (prv_semaphore_wait(bus->state)) {
if ((bus->state->transfer_event == I2CTransferEvent_TransferComplete) ||
(bus->state->transfer_event == I2CTransferEvent_Error)) {
// Track the max transfer duration so we can keep tabs on the MFi chip's nacking behavior
const uint32_t duration_ticks = rtc_get_ticks() - bus->state->transfer_start_ticks;
if (duration_ticks > s_max_transfer_duration_ticks) {
s_max_transfer_duration_ticks = duration_ticks;
}
if (bus->state->transfer_event == I2CTransferEvent_Error) {
PBL_LOG(LOG_LEVEL_ERROR, "I2C Error on bus %s", bus->name);
}
complete = true;
result = (bus->state->transfer_event == I2CTransferEvent_TransferComplete);
} else if (bus->state->transfer_nack_count < I2C_NACK_COUNT_MAX) {
// NACK received after start condition sent: the MFI chip NACKs start conditions whilst it
// is busy
// Retry start condition after a short delay.
// A NACK count is incremented for each NACK received, so that legitimate NACK
// errors cause the transfer to be aborted (after the NACK count max has been reached).
bus->state->transfer_nack_count++;
// Wait 1-2ms:
psleep(2);
} else {
// Too many NACKs received, abort transfer
i2c_hal_abort_transfer(bus);
complete = true;
PBL_LOG(LOG_LEVEL_ERROR, "I2C Error: too many NACKs received on bus %s", bus->name);
break;
}
} else {
// Timeout, abort transfer
i2c_hal_abort_transfer(bus);
complete = true;
PBL_LOG(LOG_LEVEL_ERROR, "Transfer timed out on bus %s", bus->name);
break;
}
} while (!complete);
// Return semaphore token so another transfer can be started
prv_semaphore_give(bus->state);
// Wait for bus to to clear the busy flag before a new transfer starts
// Theoretically a transfer could complete successfully, but the busy flag never clears,
// which would cause the next transfer to fail
if (!prv_wait_for_not_busy(bus)) {
// Reset I2C bus if busy flag does not clear
prv_bus_reset(bus);
}
stop_mode_enable(bus->stop_mode_inhibitor);
mutex_unlock(bus->state->bus_mutex);
if (!result) {
prv_analytics_track_i2c_error();
}
return result;
}
bool i2c_read_register(I2CSlavePort *slave, uint8_t register_address, uint8_t *result) {
return i2c_read_register_block(slave, register_address, 1, result);
}
bool i2c_read_register_block(I2CSlavePort *slave, uint8_t register_address_start,
uint32_t read_size, uint8_t* result_buffer) {
PBL_ASSERTN(slave);
PBL_ASSERTN(result_buffer);
// Do transfer locks the bus
bool result = prv_do_transfer(slave->bus, Read, slave->address, register_address_start, read_size,
result_buffer, SendRegisterAddress);
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "Read failed on bus %s", slave->bus->name);
}
return result;
}
bool i2c_read_block(I2CSlavePort *slave, uint32_t read_size, uint8_t* result_buffer) {
PBL_ASSERTN(slave);
PBL_ASSERTN(result_buffer);
bool result = prv_do_transfer(slave->bus, Read, slave->address, 0, read_size, result_buffer,
NoRegisterAddress);
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "Block read failed on bus %s", slave->bus->name);
}
return result;
}
bool i2c_write_register(I2CSlavePort *slave, uint8_t register_address, uint8_t value) {
return i2c_write_register_block(slave, register_address, 1, &value);
}
bool i2c_write_register_block(I2CSlavePort *slave, uint8_t register_address_start,
uint32_t write_size, const uint8_t* buffer) {
PBL_ASSERTN(slave);
PBL_ASSERTN(buffer);
// Do transfer locks the bus
bool result = prv_do_transfer(slave->bus, Write, slave->address, register_address_start,
write_size, (uint8_t*)buffer, SendRegisterAddress);
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "Write failed on bus %s", slave->bus->name);
}
return result;
}
bool i2c_write_block(I2CSlavePort *slave, uint32_t write_size, const uint8_t* buffer) {
PBL_ASSERTN(slave);
PBL_ASSERTN(buffer);
// Do transfer locks the bus
bool result = prv_do_transfer(slave->bus, Write, slave->address, 0, write_size, (uint8_t*)buffer,
NoRegisterAddress);
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "Block write failed on bus %s", slave->bus->name);
}
return result;
}
/*----------------------HAL INTERFACE--------------------------------*/
portBASE_TYPE i2c_handle_transfer_event(I2CBus *bus, I2CTransferEvent event) {
bus->state->transfer_event = event;
return prv_semaphore_give_from_isr(bus->state);
}
/*------------------------ANALYTICS----------------------------------*/
static void prv_analytics_track_i2c_error(void) {
analytics_inc(ANALYTICS_DEVICE_METRIC_I2C_ERROR_COUNT, AnalyticsClient_System);
}
void analytics_external_collect_i2c_stats(void) {
analytics_set(ANALYTICS_DEVICE_METRIC_I2C_MAX_TRANSFER_DURATION_TICKS,
s_max_transfer_duration_ticks, AnalyticsClient_System);
s_max_transfer_duration_ticks = 0;
}
/*------------------------COMMAND FUNCTIONS--------------------------*/
// FIXME: Move to board-specific implementations
// https://pebbletechnology.atlassian.net/browse/PBL-32232
#if PLATFORM_TINTIN
void command_power_2v5(char *arg) {
// Intentionally ignore the s_running_count and make it so!
// This is intended for low level electrical test only
if (!strcmp("on", arg)) {
prv_bus_rail_power_up(I2C_MFI->bus);
} else {
prv_bus_rail_power_down(I2C_MFI->bus);
}
}
#endif