# This is a layer configuration file that contains all the # layer types supported by this code. It's not actually good for anything # other than demonstrating how layers are specified and connected to one another. # Note: this file has gotten so big that the resultant net will not run on anything short of a 3GB GTX 580. # But there's no particular reason to run the net specified by this file. It's not actually good. [data] type=data dataIdx=0 [labels] type=data dataIdx=1 [conv32] type=conv inputs=data channels=3 filters=32 padding=4 stride=1 filterSize=9 neuron=logistic initW=0.00001 partialSum=1 sharedBiases=true [local32] type=local inputs=conv32 channels=32 filters=32 padding=4 stride=1 filterSize=9 neuron=logistic initW=0.00001 [fc1024] type=fc outputs=1024 inputs=data initW=0.001 neuron=relu [maxpool] type=pool pool=max inputs=local32 start=0 sizeX=4 stride=2 outputsX=0 channels=32 [rnorm1] type=rnorm inputs=maxpool channels=32 sizeX=5 scale=0.0000125 pow=0.75 [cnorm1] type=cnorm inputs=rnorm1 channels=32 sizeX=7 scale=0.001 pow=0.5 [conv32-2] type=conv inputs=cnorm1 groups=4 channels=32 filters=32 padding=2 stride=1 filterSize=5 neuron=relu initW=0.0001 partialSum=1 sharedBiases=false [conv32-3] type=conv inputs=conv32-2 groups=4 channels=128 filters=32 padding=2 stride=2 filterSize=5 neuron=relu initW=0.0001 partialSum=1 randSparse=true filterChannels=64 [fc10] type=fc outputs=10 inputs=conv32-3,fc1024 initW=0.0001,0.0001 neuron=ident [probs] type=softmax inputs=fc10 [logprob] type=cost.logreg inputs=labels,probs