from data import * import numpy.random as nr import numpy as n import random as r from time import time from threading import Thread from math import sqrt import sys from pylab import * class FlatMemoryDataProvider(LabeledMemoryDataProvider): def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): LabeledMemoryDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.data_mean = self.batch_meta['data_mean'].reshape((self.batch_meta['data_mean'].shape[0], 1)) # Subtract the mean from the data and make sure that both data and # labels are in single-precision floating point. for d in self.data_dic: # This converts the data matrix to single precision and makes sure that it is C-ordered d['data'] = n.require((d['data'] - self.data_mean), dtype=n.single, requirements='C') d['labels'] = d['labels'].astype(n.int) d['labelprobs'] = n.zeros((self.get_num_classes(), d['data'].shape[1]), dtype=n.single) for c in xrange(d['data'].shape[1]): d['labelprobs'][d['labels'][c],c] = 1.0 def get_next_batch(self): epoch, batchnum, datadic = LabeledMemoryDataProvider.get_next_batch(self) return epoch, batchnum, [datadic['data'], datadic['labelprobs']] def get_data_dims(self, idx=0): return self.batch_meta['num_vis'] if idx == 0 else self.get_num_classes() class ImageNetDP(LabeledDataProvider): MAX_PCA_COMPONENTS = 1024 # Use this many components for noise generation def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.init_commons(data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) def init_commons(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): self.data_mean = self.batch_meta['data_mean'].astype(n.single) self.color_eig = self.batch_meta['color_pca'][1].astype(n.single) self.color_stdevs = n.c_[self.batch_meta['color_pca'][0].astype(n.single)] self.color_noise_coeff = dp_params['color_noise'] self.pca_noise_coeff = dp_params['pca_noise'] self.num_colors = 3 self.img_size = int(sqrt(self.batch_meta['num_vis'] / self.num_colors)) def get_labels(self, datadic): pass def showimg(self, img): pixels = img.shape[0] / 3 size = int(sqrt(pixels)) img = img.reshape((3,size,size)).swapaxes(0,2).swapaxes(0,1) imshow(img, interpolation='nearest') show() def get_next_batch(self): epoch, batchnum, datadic = LabeledDataProvider.get_next_batch(self) # This takes about 1 sec per batch :( # If I don't convert both to single ahead of time, it takes even longer. data = n.require(datadic['data'] - self.data_mean, dtype=n.single, requirements='C') labels = self.get_labels(datadic) # wordvecs = datadic['wordvecs'] wordpres = datadic['wordpres'] # Labels have to be in the range 0-(number of classes - 1) assert labels.max() < self.get_num_classes(), "Invalid labels!" assert labels.min() == 0, "Invalid labels!" return epoch, batchnum, [data, labels, wordpres] # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data, add_mean=True): return n.require((data + (self.data_mean if add_mean else 0)).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) class ImageNetLogRegDP(ImageNetDP): def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): ImageNetDP.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) def get_labels(self, datadic): return n.array(datadic['labels'], dtype=n.single).reshape((1, datadic['data'].shape[1])) def get_data_dims(self, idx=0): if idx == 0: return self.img_size**2 * self.num_colors if idx == 2: return 100 return 1 class BatchLoaderThread(Thread): def __init__(self, data_dir, path, list_out): Thread.__init__(self) self.data_dir = data_dir self.path = path self.list_out = list_out #print "loading %d" % self.bnum def run(self): self.list_out.append(unpickle(self.path)) class ColorNoiseMakerThread(Thread): def __init__(self, pca_stdevs, pca_vecs, num_noise, list_out): Thread.__init__(self) self.pca_stdevs, self.pca_vecs = pca_stdevs, pca_vecs self.num_noise = num_noise self.list_out = list_out def run(self): noise = n.dot(self.pca_vecs, nr.randn(3, self.num_noise).astype(n.single) * self.pca_stdevs) self.list_out.append(noise) class CroppedImageNetDP(ImageNetDP): def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params={}, test=False): ImageNetDP.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.border_size = dp_params['crop_border'] self.inner_size = self.img_size - self.border_size*2 self.multiview = dp_params['multiview_test'] and test self.num_views = 5*2 self.data_mult = self.num_views if self.multiview else 1 self.crop_chunk = 32 # This many images will be cropped in the same way # Maintain poitners to previously-returned data matrices so they don't get garbage collected. # I've never seen this happen but it's a safety measure. self.data = [None, None] self.cropped_data = [n.zeros((self.get_data_dims(), 0*self.data_mult), dtype=n.single) for x in xrange(2)] self.loader_thread, self.color_noise_thread = None, None self.convnet = dp_params['convnet'] self.num_noise = 1024 self.batches_generated = 0 self.data_mean_crop = self.data_mean.reshape((3,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((3*self.inner_size**2, 1)) def get_data_dims(self, idx=0): if idx == 0: return self.inner_size**2 * 3 return 1 def start_color_noise_maker(self): color_noise_list = [] self.color_noise_thread = ColorNoiseMakerThread(self.color_stdevs, self.color_eig, self.num_noise, color_noise_list) self.color_noise_thread.start() return color_noise_list def get_labels(self, datadic): pass def start_loader(self, batch_idx): self.load_data = [] self.loader_thread = BatchLoaderThread(self.data_dir, self.get_data_file_name(self.batch_range[batch_idx]), self.load_data) self.loader_thread.start() def get_next_batch(self): self.d_idx = self.batches_generated % 2 if self.test: epoch, batchnum, self.data[self.d_idx] = LabeledDataProvider.get_next_batch(self) else: epoch, batchnum = self.curr_epoch, self.curr_batchnum if self.loader_thread is None: self.start_loader(self.batch_idx) self.loader_thread.join() self.data[self.d_idx] = self.load_data[0] self.start_loader(self.get_next_batch_idx()) else: # Set the argument to join to 0 to re-enable batch reuse self.loader_thread.join() if not self.loader_thread.is_alive(): self.data[self.d_idx] = self.load_data[0] self.start_loader(self.get_next_batch_idx()) self.advance_batch() cropped = self.get_cropped_data(self.data[self.d_idx]) if self.color_noise_coeff > 0 and not self.test: # At this point the data already has 0 mean. # So I'm going to add noise to it, but I'm also going to scale down # the original data. This is so that the overall scale of the training # data doesn't become too different from the test data. s = cropped.shape cropped_size = self.get_data_dims(0) / 3 ncases = s[1] if self.color_noise_thread is None: self.color_noise_list = self.start_color_noise_maker() self.color_noise_thread.join() self.color_noise = self.color_noise_list[0] self.color_noise_list = self.start_color_noise_maker() else: self.color_noise_thread.join(0) if not self.color_noise_thread.is_alive(): self.color_noise = self.color_noise_list[0] self.color_noise_list = self.start_color_noise_maker() # print "Generated new noise" # else: # print "Reusing old noise" # If the noise thread IS alive, then we'll just re-use the noise from the last run cropped = self.cropped_data[self.d_idx] = cropped.reshape((3, cropped_size, ncases)).swapaxes(0,1).reshape((cropped_size, ncases*3)) self.color_noise = self.color_noise[:,:ncases].reshape((1, 3*ncases)) cropped += self.color_noise * self.color_noise_coeff cropped = self.cropped_data[self.d_idx] = cropped.reshape((cropped_size, 3, ncases)).swapaxes(0,1).reshape(s) cropped /= 1.0 + self.color_noise_coeff # cropped -= cropped.min() # cropped /= cropped.max() # self.showimg(cropped[:,0]) self.data[self.d_idx]['labels'] = self.get_labels(self.data[self.d_idx]) self.data[self.d_idx]['data'] = cropped self.batches_generated += 1 return epoch, batchnum, [self.data[self.d_idx]['data'], self.data[self.d_idx]['labels']] def get_cropped_data(self, data): cropped = self.cropped_data[self.d_idx] if cropped.shape[1] != data['data'].shape[1] * self.data_mult: cropped = self.cropped_data[self.d_idx] = n.zeros((cropped.shape[0], data['data'].shape[1] * self.data_mult), dtype=n.single) self.__trim_borders(data['data'], cropped) return self.subtract_mean(cropped) def subtract_mean(self,data): data -= self.data_mean_crop return data # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data, add_mean=True): return n.require((data + (self.data_mean_crop if add_mean else 0)).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) def __trim_borders(self, x, target): y = x.reshape(3, self.img_size, self.img_size, x.shape[1]) if self.test: # don't need to loop over cases if self.multiview: start_positions = [(0,0), (0, self.border_size*2), (self.border_size, self.border_size), (self.border_size*2, 0), (self.border_size*2, self.border_size*2)] end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions] for i in xrange(self.num_views/2): pic = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:] target[:,i * x.shape[1]:(i+1)* x.shape[1]] = pic.reshape((self.get_data_dims(),x.shape[1])) target[:,(self.num_views/2 + i) * x.shape[1]:(self.num_views/2 +i+1)* x.shape[1]] = pic[:,:,::-1,:].reshape((self.get_data_dims(),x.shape[1])) else: pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1])) else: for c in xrange(0, x.shape[1], self.crop_chunk): # loop over cases in chunks startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1) endY, endX = startY + self.inner_size, startX + self.inner_size c_end = min(c + self.crop_chunk, x.shape[1]) pic = y[:,startY:endY,startX:endX, c:c_end] if nr.randint(2) == 0: # also flip the images with 50% probability pic = pic[:,:,::-1,:] target[:,c:c_end] = pic.reshape((self.get_data_dims(),c_end-c)) #target[:] = n.require(target[:,nr.permutation(x.shape[1])], requirements='C') class CroppedImageNetLogRegDP(CroppedImageNetDP): def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): CroppedImageNetDP.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) def get_labels(self, datadic): return n.require(n.tile(n.array(datadic['labels'], dtype=n.single).reshape((1, datadic['data'].shape[1])), (1, self.data_mult)), requirements='C') class RandomScaleImageNetLogRegDP(CroppedImageNetLogRegDP): def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): CroppedImageNetLogRegDP.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) del self.cropped_data self.data_mean_mean = self.data_mean.mean() def get_cropped_data(self): if self.test and self.multiview: x = self.data['data'] y = x.reshape(3, self.img_size, self.img_size, x.shape[1]) target = n.zeros((self.inner_size**2*3, self.data['data'].shape[1]*self.num_views), dtype=n.uint8) start_positions = [(0,0), (0, self.border_size), (0, self.border_size*2), (self.border_size, 0), (self.border_size, self.border_size), (self.border_size, self.border_size*2), (self.border_size*2, 0), (self.border_size*2, self.border_size), (self.border_size*2, self.border_size*2)] end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions] for i in xrange(self.num_views): target[:,i * x.shape[1]:(i+1)* x.shape[1]] = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:].reshape((self.inner_size**2*3,x.shape[1])) return self.subtract_mean(target) elif not self.test: # it should be ok to flip it into the same matrix # since if it ends up being reused, flips are invertible. self.reflect_data(self.data['data'], self.data['data']) return self.subtract_mean(self.data['data']) def reflect_data(self, x, target): y = x.reshape(3, self.img_size, self.img_size, x.shape[1]) for c in xrange(0, x.shape[1], self.crop_chunk): # loop over cases in chunks c_end = min(c + self.crop_chunk, x.shape[1]) pic = y[:,:,:, c:c_end] if nr.randint(2) == 0: # flip the images with 50% probability pic = pic[:,:,::-1,:] target[:,c:c_end] = pic.reshape((self.get_data_dims(),c_end-c)) # Note that this variant subtracts the same scalar from each pixel def subtract_mean(self, data): return n.require(data - self.data_mean_mean, dtype=n.single, requirements='C') def get_data_dims(self, idx=0): return self.img_size**2 * 3 if idx == 0 else 1 class DummyConvNetLogRegDP(LabeledDummyDataProvider): def __init__(self, data_dim): LabeledDummyDataProvider.__init__(self, data_dim) self.batch_meta['tree'] = dict([(i, []) for i in xrange(self.num_classes)]) self.batch_meta['tree'][10] = [0, 1, 2] self.batch_meta['tree'][11] = [3, 4, 5] self.batch_meta['tree'][12] = [6, 7] self.batch_meta['tree'][13] = [8, 9] self.batch_meta['tree'][14] = [10, 11] self.batch_meta['tree'][15] = [12, 13] self.batch_meta['tree'][16] = [14, 15] self.batch_meta['all_wnids'] = {'gproot': 16} self.img_size = int(sqrt(data_dim/3)) def get_next_batch(self): epoch, batchnum, dic = LabeledDummyDataProvider.get_next_batch(self) dic['data'] = n.require(dic['data'].T, requirements='C') dic['labels'] = n.require(dic['labels'].T, requirements='C') dic['gates'] = nr.rand(1, dic['data'].shape[1]).astype(n.single) return epoch, batchnum, [dic['data'], dic['labels'], dic['gates']] # Returns the dimensionality of the two data matrices returned by get_next_batch def get_data_dims(self, idx=0): return self.batch_meta['num_vis'] if idx == 0 else 1