from data import * import numpy.random as nr import numpy as n import random as r class CIFARDataProvider(LabeledDataProvider): def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.data_mean = self.batch_meta['data_mean'] self.num_colors = 3 self.img_size = 32 self.data_dims = [self.img_size**2 * self.num_colors, 1, self.get_num_classes()] def get_next_batch(self): epoch, batchnum, datadic = LabeledDataProvider.get_next_batch(self) if 'processed' not in datadic: datadic['data'] = n.require((datadic['data'] - self.data_mean), dtype=n.single, requirements='C') datadic['labelsVec'] = n.require(n.array(datadic['labels']).reshape((1, datadic['data'].shape[1])), requirements='C', dtype=n.single) datadic['labelsMat'] = n.zeros((self.get_num_classes(), datadic['data'].shape[1]), dtype=n.single) datadic['labelsMat'][datadic['labels'],n.c_[0:datadic['data'].shape[1]]] = 1 datadic['processed'] = True return epoch, batchnum, [datadic['data'], datadic['labelsVec'], datadic['labelsMat']] # Returns the dimensionality of the two data matrices returned by get_next_batch # idx is the index of the matrix. def get_data_dims(self, idx=0): return self.data_dims[idx] # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data): return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) class CroppedCIFARDataProvider(LabeledMemoryDataProvider): def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False): LabeledMemoryDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.border_size = dp_params['crop_border'] self.inner_size = 32 - self.border_size*2 self.multiview = dp_params['multiview_test'] and test self.num_views = 9 self.data_mult = self.num_views if self.multiview else 1 self.num_colors = 3 for d in self.data_dic: d['data'] = n.require(d['data'], requirements='C') d['labels'] = n.require(n.tile(d['labels'].reshape((1, d['data'].shape[1])), (1, self.data_mult)), requirements='C') self.cropped_data = [n.zeros((self.get_data_dims(), self.data_dic[0]['data'].shape[1]*self.data_mult), dtype=n.single) for x in xrange(2)] self.batches_generated = 0 self.data_mean = self.batch_meta['data_mean'].reshape((3,32,32))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((self.get_data_dims(), 1)) def get_next_batch(self): epoch, batchnum, datadic = LabeledMemoryDataProvider.get_next_batch(self) cropped = self.cropped_data[self.batches_generated % 2] self.__trim_borders(datadic['data'], cropped) cropped -= self.data_mean self.batches_generated += 1 return epoch, batchnum, [cropped, datadic['labels']] def get_data_dims(self, idx=0): return self.inner_size**2 * 3 if idx == 0 else 1 # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data): return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) def __trim_borders(self, x, target): y = x.reshape(3, 32, 32, x.shape[1]) if self.test: # don't need to loop over cases if self.multiview: start_positions = [(0,0), (0, self.border_size), (0, self.border_size*2), (self.border_size, 0), (self.border_size, self.border_size), (self.border_size, self.border_size*2), (self.border_size*2, 0), (self.border_size*2, self.border_size), (self.border_size*2, self.border_size*2)] end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions] for i in xrange(self.num_views): target[:,i * x.shape[1]:(i+1)* x.shape[1]] = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:].reshape((self.get_data_dims(),x.shape[1])) else: pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1])) else: for c in xrange(x.shape[1]): # loop over cases startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1) endY, endX = startY + self.inner_size, startX + self.inner_size pic = y[:,startY:endY,startX:endX, c] if nr.randint(2) == 0: # also flip the image with 50% probability pic = pic[:,:,::-1] target[:,c] = pic.reshape((self.get_data_dims(),)) class DummyConvNetDataProvider(LabeledDummyDataProvider): def __init__(self, data_dim): LabeledDummyDataProvider.__init__(self, data_dim) def get_next_batch(self): epoch, batchnum, dic = LabeledDummyDataProvider.get_next_batch(self) dic['data'] = n.require(dic['data'].T, requirements='C') dic['labels'] = n.require(dic['labels'].T, requirements='C') return epoch, batchnum, [dic['data'], dic['labels']] # Returns the dimensionality of the two data matrices returned by get_next_batch def get_data_dims(self, idx=0): return self.batch_meta['num_vis'] if idx == 0 else 1