from data import * import numpy.random as nr import numpy as n import random as r from time import time from threading import Thread from math import sqrt import sys from pylab import * from PIL import Image from StringIO import StringIO class JPEGBatchLoaderThread(Thread): def __init__(self, data_dir, path, freq_to_id, tgt, tgt_labels, list_out): Thread.__init__(self) self.data_dir = data_dir self.path = path self.tgt = tgt self.tgt_labels = tgt_labels self.list_out = list_out self.freq_to_id = freq_to_id #print "loading %d" % self.bnum @staticmethod def raw_to_freq_id(raw_tags, freq_to_id): raw_tags = [''.join(t.lower().strip().split()) for t in raw_tags] return [freq_to_id[t] for t in raw_tags if t in freq_to_id] @staticmethod def load_jpeg_batch((strings, sizes, labels), freq_to_id, tgt, tgt_labels): tgt_labels[:] = 0 for k,s in enumerate(strings): ima = n.asarray(Image.open(StringIO(s)).convert('RGB')) tgt[k,:] = ima.swapaxes(0,2).swapaxes(1,2).flatten() tgt_labels[k, JPEGBatchLoaderThread.raw_to_freq_id(labels[k], freq_to_id)] = 1 return {'data': tgt[:len(strings),:], 'labels': tgt_labels[:len(strings),:]} def run(self): p = self.load_jpeg_batch(unpickle(self.path), self.freq_to_id, self.tgt, self.tgt_labels) self.list_out.append(p) class ColorNoiseMakerThread(Thread): def __init__(self, pca_stdevs, pca_vecs, num_noise, list_out): Thread.__init__(self) self.pca_stdevs, self.pca_vecs = pca_stdevs, pca_vecs self.num_noise = num_noise self.list_out = list_out def run(self): noise = n.dot(nr.randn(self.num_noise, 3).astype(n.single) * self.pca_stdevs.T, self.pca_vecs.T) self.list_out.append(noise) class FlickrDP(LabeledDataProvider): MAX_PCA_COMPONENTS = 1024 # Use this many components for noise generation def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.init_commons(data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) def init_commons(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): self.data_mean = self.batch_meta['data_mean'].astype(n.single) self.color_eig = self.batch_meta['color_pca'][1].astype(n.single) self.color_stdevs = n.c_[self.batch_meta['color_pca'][0].astype(n.single)] self.color_noise_coeff = dp_params['color_noise'] self.pca_noise_coeff = dp_params['pca_noise'] self.num_colors = 3 self.img_size = int(sqrt(self.batch_meta['num_vis'] / self.num_colors)) self.freq_to_id = self.batch_meta['freq_to_id'] def get_labels(self, datadic): pass def showimg(self, img): pixels = img.shape[0] / 3 size = int(sqrt(pixels)) img = img.reshape((3,size,size)).swapaxes(0,2).swapaxes(0,1) imshow(img, interpolation='nearest') show() def get_next_batch(self): epoch, batchnum, datadic = LabeledDataProvider.get_next_batch(self) # This takes about 1 sec per batch :( # If I don't convert both to single ahead of time, it takes even longer. data = n.require(datadic['data'] - self.data_mean, dtype=n.single, requirements='C') labels = self.get_labels(datadic) # Labels have to be in the range 0-(number of classes - 1) assert labels.max() < self.get_num_classes(), "Invalid labels!" assert labels.min() >= 0, "Invalid labels!" return epoch, batchnum, [data, labels] # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data, add_mean=True): return n.require((data + (self.data_mean if add_mean else 0)).reshape(data.shape[0], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) class JPEGCroppedFlickrDP(FlickrDP): def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False): LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.init_commons(data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.img_size = int(sqrt(self.batch_meta['num_vis'] / self.num_colors)) self.border_size = dp_params['crop_border'] self.inner_size = self.img_size - self.border_size*2 self.multiview = dp_params['multiview_test'] and test self.num_views = 5*2 self.data_mult = self.num_views if self.multiview else 1 self.crop_chunk = 32 # This many images will be cropped in the same way self.batch_size = self.batch_meta['batch_size'] # Maintain poitners to previously-returned data matrices so they don't get garbage collected. # I've never seen this happen but it's a safety measure. self.data = [None, None] self.cropped_data = [n.zeros((0*self.data_mult, self.get_data_dims()), dtype=n.float32) for x in xrange(2)] if self.test: self.orig_data = [n.zeros((self.batch_size, self.img_size**2*3), dtype=n.uint8) for x in xrange(1)] self.orig_labels = [n.zeros((self.batch_size, self.get_num_classes()), dtype=n.float32) for x in xrange(2)] else: self.orig_data = [n.zeros((self.batch_size, self.img_size**2*3), dtype=n.uint8) for x in xrange(2)] # There have to be 3 copies of labels because this matrix actually gets used by the training code self.orig_labels = [n.zeros((self.batch_size, self.get_num_classes()), dtype=n.float32) for x in xrange(3)] self.loader_thread, self.color_noise_thread = None, None self.convnet = dp_params['convnet'] self.num_noise = self.batch_size self.batches_generated, self.loaders_started = 0, 0 self.data_mean_crop = self.data_mean.reshape((3,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((1,3*self.inner_size**2)) def get_data_dims(self, idx=0): assert idx in (0,1), "Invalid index: %d" % idx if idx == 0: return self.inner_size**2 * 3 return self.get_num_classes() def start_loader(self, batch_idx): self.load_data = [] #print "loading %d" % self.batch_range_perm[self.batch_idx] self.loader_thread = JPEGBatchLoaderThread(self.data_dir, self.get_data_file_name(self.batch_range[batch_idx]), self.freq_to_id, self.orig_data[self.loaders_started % 2], self.orig_labels[self.loaders_started % 3], self.load_data) self.loader_thread.start() self.loaders_started += 1 def start_color_noise_maker(self): color_noise_list = [] self.color_noise_thread = ColorNoiseMakerThread(self.color_stdevs, self.color_eig, self.num_noise, color_noise_list) self.color_noise_thread.start() return color_noise_list def get_labels(self, datadic): pass def get_next_batch(self): self.d_idx = self.batches_generated % 2 if self.test: epoch, batchnum, self.data[self.d_idx] = LabeledDataProvider.get_next_batch(self) self.data[self.d_idx] = JPEGBatchLoaderThread.load_jpeg_batch(self.data[self.d_idx], self.freq_to_id, self.orig_data[0], self.orig_labels[self.d_idx]) else: epoch, batchnum = self.curr_epoch, self.curr_batchnum if self.loader_thread is None: self.start_loader(self.batch_idx) self.loader_thread.join() self.data[self.d_idx] = self.load_data[0] self.start_loader(self.get_next_batch_idx()) else: # Set the argument to join to 0 to re-enable batch reuse self.loader_thread.join() if not self.loader_thread.is_alive(): self.data[self.d_idx] = self.load_data[0] self.start_loader(self.get_next_batch_idx()) # else: # print "Re-using batch" self.advance_batch() cropped = self.get_cropped_data(self.data[self.d_idx]) if self.color_noise_coeff > 0 and not self.test: # At this point the data already has 0 mean. # So I'm going to add noise to it, but I'm also going to scale down # the original data. This is so that the overall scale of the training # data doesn't become too different from the test data. s = cropped.shape cropped_size = self.get_data_dims(0) / 3 ncases = s[0] if self.color_noise_thread is None: self.color_noise_list = self.start_color_noise_maker() self.color_noise_thread.join() self.color_noise = self.color_noise_list[0] self.color_noise_list = self.start_color_noise_maker() else: self.color_noise_thread.join(0) if not self.color_noise_thread.is_alive(): self.color_noise = self.color_noise_list[0] self.color_noise_list = self.start_color_noise_maker() cropped = self.cropped_data[self.d_idx] = cropped.reshape((ncases*3, cropped_size)) self.color_noise = self.color_noise[:ncases,:].reshape((3*ncases, 1)) cropped += self.color_noise * self.color_noise_coeff cropped = self.cropped_data[self.d_idx] = cropped.reshape((ncases, 3* cropped_size)) cropped /= (1.0 + self.color_noise_coeff) self.data[self.d_idx]['labels'] = self.get_labels(self.data[self.d_idx]) self.data[self.d_idx]['data'] = cropped self.batches_generated += 1 # idx = 1000 # cropped -= cropped.min() # cropped /= cropped.max() # # print [self.batch_meta['label_names'][i] for i in n.where(self.data['labels'][idx,:]==1)[0]] # self.showimg(cropped[idx,:]) #print cropped.shape return epoch, batchnum, [self.data[self.d_idx]['data'].T, self.data[self.d_idx]['labels'].T] def get_cropped_data(self, data): cropped = self.cropped_data[self.d_idx] if cropped.shape[0] != data['data'].shape[0] * self.data_mult: cropped = self.cropped_data[self.d_idx] = n.zeros((data['data'].shape[0] * self.data_mult, cropped.shape[1]), dtype=n.float32) self.__trim_borders(data['data'], cropped) return self.subtract_mean(cropped) def subtract_mean(self,data): data -= self.data_mean_crop return data # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data, add_mean=True): return n.require((data.T + (self.data_mean_crop if add_mean else 0)).reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) def __trim_borders(self, x, target): y = x.reshape(x.shape[0], 3, self.img_size, self.img_size) if self.test: # don't need to loop over cases if self.multiview: start_positions = [(0,0), (0, self.border_size*2), (self.border_size, self.border_size), (self.border_size*2, 0), (self.border_size*2, self.border_size*2)] end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions] for i in xrange(self.num_views/2): pic = y[:,:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1]] target[i * x.shape[0]:(i+1)* x.shape[0],:] = pic.reshape((x.shape[0], self.get_data_dims())) target[(self.num_views/2 + i) * x.shape[0]:(self.num_views/2 +i+1)* x.shape[0],:] = pic[:,:,:,::-1].reshape((x.shape[0],self.get_data_dims())) else: pic = y[:,:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size] # just take the center for now target[:,:] = pic.reshape((x.shape[0], self.get_data_dims())) else: for c in xrange(0, x.shape[0], self.crop_chunk): # loop over cases in chunks startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1) endY, endX = startY + self.inner_size, startX + self.inner_size c_end = min(c + self.crop_chunk, x.shape[0]) pic = y[c:c_end,:,startY:endY,startX:endX] if nr.randint(2) == 0: # also flip the images with 50% probability pic = pic[:,:,:,::-1] target[c:c_end,:] = pic.reshape((c_end-c, self.get_data_dims())) #target[:] = n.require(target[:,nr.permutation(x.shape[1])], requirements='C') class JPEGCroppedFlickrCEDP(JPEGCroppedFlickrDP): def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False): JPEGCroppedFlickrDP.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) def get_labels(self, data): return n.require(n.tile(data['labels'], (self.data_mult, 1)), requirements='C') class DummyConvNetCEDP(LabeledDummyDataProvider): def __init__(self, data_dim): LabeledDummyDataProvider.__init__(self, data_dim, num_classes=16, num_cases=16) def get_next_batch(self): epoch, batchnum, dic = LabeledDummyDataProvider.get_next_batch(self) dic['data'] = n.require(dic['data'].T, requirements='F') dic['labels'] = n.zeros((self.get_data_dims(idx=1), dic['data'].shape[1]), dtype=n.float32, order='F') for c in xrange(dic['labels'].shape[1]): # loop over cases r = nr.randint(0, dic['labels'].shape[0]) dic['labels'][r,c] = 1 return epoch, batchnum, [dic['data'], dic['labels']] # Returns the dimensionality of the two data matrices returned by get_next_batch def get_data_dims(self, idx=0): return self.batch_meta['num_vis'] if idx == 0 else 16