[data] type=data dataIdx=0 [labels] type=data dataIdx=1 [conv1a] type=conv inputs=data channels=3 filters=48 padding=0 stride=4 filterSize=11 initW=0.01 partialSum=5 sharedBiases=1 gpu=0 [rnorm1a] type=cmrnorm inputs=conv1a channels=48 size=5 [pool1a] type=pool pool=max inputs=rnorm1a sizeX=3 stride=2 channels=48 neuron=relu [conv2a] type=conv inputs=pool1a filters=128 padding=2 stride=1 filterSize=5 channels=48 initW=0.01 initB=1 partialSum=3 sharedBiases=1 neuron=relu gpu=0 [rnorm2a] type=cmrnorm inputs=conv2a channels=128 size=5 [cnorm2a] type=rnorm inputs=rnorm2a channels=128 size=5 [pool2a] type=pool pool=max inputs=cnorm2a sizeX=3 stride=2 channels=128 [conv3a] type=conv inputs=pool2a filters=192 padding=1 stride=1 filterSize=3 channels=128 initW=0.03 partialSum=13 sharedBiases=1 neuron=relu gpu=0 [conv4a] type=conv inputs=conv3a filters=192 padding=1 stride=1 filterSize=3 channels=192 neuron=relu initW=0.03 initB=1 partialSum=13 sharedBiases=1 [conv5a] type=conv inputs=conv4a filters=256 padding=1 stride=1 filterSize=3 channels=192 initW=0.03 initB=1 partialSum=13 groups=1 randSparse=0 [pool3a] type=pool pool=max inputs=conv5a sizeX=3 stride=2 channels=256 neuron=relu [fc4096a] type=fc inputs=pool3a outputs=4096 initW=0.01 initB=1 neuron=relu gpu=0 [hs1a] type=hs keep=0.5 inputs=fc4096a [fc4096ba] type=fc inputs=hs1a outputs=4096 initW=0.01 initB=1 neuron=relu gpu=0 [hs2a] type=hs keep=0.5 inputs=fc4096ba [fc1000] type=fc outputs=1000 inputs=hs2a initW=0.01 gpu=0 [probs] type=softmax inputs=fc1000 [logprob] type=cost.logreg inputs=labels,probs gpu=0