[data] type=data dataIdx=0 [labels] type=data dataIdx=1 [conv1a] type=conv inputs=data channels=3 filters=48 padding=0 stride=4 filterSize=11 initW=0.01 partialSum=11 sharedBiases=1 gpu=0 [conv1b] type=conv inputs=data channels=3 filters=48 padding=0 stride=4 filterSize=11 initW=0.01 partialSum=11 sharedBiases=1 gpu=1 [conv1c] type=conv inputs=data channels=3 filters=48 padding=0 stride=4 filterSize=11 initW=0.01 partialSum=11 sharedBiases=1 gpu=2 [conv1d] type=conv inputs=data channels=3 filters=48 padding=0 stride=4 filterSize=11 initW=0.01 partialSum=11 sharedBiases=1 gpu=3 [rnorm1a] type=cmrnorm inputs=conv1a channels=48 size=5 [rnorm1b] type=cmrnorm inputs=conv1b channels=48 size=5 [rnorm1c] type=cmrnorm inputs=conv1c channels=48 size=5 [rnorm1d] type=cmrnorm inputs=conv1d channels=48 size=5 [pool1a] type=pool pool=max inputs=rnorm1a sizeX=3 stride=2 channels=48 neuron=relu [pool1b] type=pool pool=max inputs=rnorm1b sizeX=3 stride=2 channels=48 neuron=relu [pool1c] type=pool pool=max inputs=rnorm1c sizeX=3 stride=2 channels=48 neuron=relu [pool1d] type=pool pool=max inputs=rnorm1d sizeX=3 stride=2 channels=48 neuron=relu [conv2a] type=conv inputs=pool1a filters=128 padding=2 stride=1 filterSize=5 channels=48 initW=0.01 initB=1 partialSum=9 sharedBiases=1 neuron=relu [conv2b] type=conv inputs=pool1b filters=128 padding=2 stride=1 filterSize=5 channels=48 initW=0.01 initB=1 partialSum=9 sharedBiases=1 neuron=relu [conv2c] type=conv inputs=pool1c filters=128 padding=2 stride=1 filterSize=5 channels=48 initW=0.01 initB=1 partialSum=9 sharedBiases=1 neuron=relu [conv2d] type=conv inputs=pool1d filters=128 padding=2 stride=1 filterSize=5 channels=48 initW=0.01 initB=1 partialSum=9 sharedBiases=1 neuron=relu [rnorm2a] type=cmrnorm inputs=conv2a channels=128 size=5 [rnorm2b] type=cmrnorm inputs=conv2b channels=128 size=5 [rnorm2c] type=cmrnorm inputs=conv2c channels=128 size=5 [rnorm2d] type=cmrnorm inputs=conv2d channels=128 size=5 [cnorm2a] type=rnorm inputs=rnorm2a channels=128 size=5 [cnorm2b] type=rnorm inputs=rnorm2b channels=128 size=5 [cnorm2c] type=rnorm inputs=rnorm2c channels=128 size=5 [cnorm2d] type=rnorm inputs=rnorm2d channels=128 size=5 [pool2a] type=pool pool=max inputs=cnorm2a sizeX=3 stride=2 channels=128 [pool2b] type=pool pool=max inputs=cnorm2b sizeX=3 stride=2 channels=128 [pool2c] type=pool pool=max inputs=cnorm2c sizeX=3 stride=2 channels=128 [pool2d] type=pool pool=max inputs=cnorm2d sizeX=3 stride=2 channels=128 [conv3a] type=conv inputs=pool2a,pool2b,pool2c filters=192,192,192 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 partialSum=13 sharedBiases=1 neuron=relu gpu=0 [conv3b] type=conv inputs=pool2a,pool2b,pool2d filters=192,192,192 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 partialSum=13 sharedBiases=1 neuron=relu gpu=1 [conv3c] type=conv inputs=pool2c,pool2d,pool2a filters=192,192,192 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 partialSum=13 sharedBiases=1 neuron=relu gpu=2 [conv3d] type=conv inputs=pool2c,pool2d,pool2b filters=192,192,192 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 partialSum=13 sharedBiases=1 neuron=relu gpu=3 [conv4a] type=conv inputs=conv3a filters=192 padding=1 stride=1 filterSize=3 channels=192 neuron=relu initW=0.03 initB=1 partialSum=13 sharedBiases=1 [conv4b] type=conv inputs=conv3b filters=192 padding=1 stride=1 filterSize=3 channels=192 neuron=relu initW=0.03 initB=1 partialSum=13 sharedBiases=1 [conv4c] type=conv inputs=conv3c filters=192 padding=1 stride=1 filterSize=3 channels=192 neuron=relu initW=0.03 initB=1 partialSum=13 sharedBiases=1 [conv4d] type=conv inputs=conv3d filters=192 padding=1 stride=1 filterSize=3 channels=192 neuron=relu initW=0.03 initB=1 partialSum=13 sharedBiases=1 [conv5a] type=conv inputs=conv4a filters=128 padding=1 stride=1 filterSize=3 channels=192 initW=0.03 initB=1 partialSum=13 groups=1 [conv5b] type=conv inputs=conv4b filters=128 padding=1 stride=1 filterSize=3 channels=192 initW=0.03 initB=1 partialSum=13 groups=1 [conv5c] type=conv inputs=conv4c filters=128 padding=1 stride=1 filterSize=3 channels=192 initW=0.03 initB=1 partialSum=13 groups=1 [conv5d] type=conv inputs=conv4d filters=128 padding=1 stride=1 filterSize=3 channels=192 initW=0.03 initB=1 partialSum=13 groups=1 [pool3a] type=pool pool=max inputs=conv5a sizeX=3 stride=2 channels=128 neuron=relu [pool3b] type=pool pool=max inputs=conv5b sizeX=3 stride=2 channels=128 neuron=relu [pool3c] type=pool pool=max inputs=conv5c sizeX=3 stride=2 channels=128 neuron=relu [pool3d] type=pool pool=max inputs=conv5d sizeX=3 stride=2 channels=128 neuron=relu [conv6a] type=conv inputs=pool3a,pool3b,pool3c filters=128,128,128 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 initB=1 partialSum=4 neuron=relu gpu=0 [conv6b] type=conv inputs=pool3a,pool3b,pool3d filters=128,128,128 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 initB=1 partialSum=4 neuron=relu gpu=1 [conv6c] type=conv inputs=pool3c,pool3d,pool3a filters=128,128,128 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 initB=1 partialSum=4 neuron=relu gpu=2 [conv6d] type=conv inputs=pool3c,pool3d,pool3b filters=128,128,128 padding=1,1,1 stride=1,1,1 filterSize=3,3,3 channels=128,128,128 initW=0.03,0.03,0.03 initB=1 partialSum=4 neuron=relu gpu=3 [fc1024a] type=fc inputs=conv6a,conv6b,conv6c outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=0 [fc1024b] type=fc inputs=conv6a,conv6b,conv6d outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=1 [fc1024c] type=fc inputs=conv6c,conv6d,conv6a outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=2 [fc1024d] type=fc inputs=conv6c,conv6d,conv6b outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=3 [hs1a] type=hs keep=0.5 inputs=fc1024a [hs1b] type=hs keep=0.5 inputs=fc1024b [hs1c] type=hs keep=0.5 inputs=fc1024c [hs1d] type=hs keep=0.5 inputs=fc1024d [fc1024ba] type=fc inputs=hs1a,hs1b,hs1c outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=0 [fc1024bb] type=fc inputs=hs1b,hs1a,hs1d outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=1 [fc1024bc] type=fc inputs=hs1c,hs1d,hs1a outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=2 [fc1024bd] type=fc inputs=hs1c,hs1d,hs1b outputs=1024 initW=0.01,0.01,0.01 initB=1 neuron=relu gpu=3 [hs2a] type=hs keep=0.5 inputs=fc1024ba [hs2b] type=hs keep=0.5 inputs=fc1024bb [hs2c] type=hs keep=0.5 inputs=fc1024bc [hs2d] type=hs keep=0.5 inputs=fc1024bd [fc1000a] type=fc outputs=2546 inputs=hs2a,hs2b,hs2c,hs2d initW=0.01,0.01,0.01,0.01 gpu=0 [fc1000b] type=fc outputs=2546 inputs=hs2a,hs2b,hs2c,hs2d initW=0.01,0.01,0.01,0.01 gpu=1 [fc1000c] type=fc outputs=2546 inputs=hs2a,hs2b,hs2c,hs2d initW=0.01,0.01,0.01,0.01 gpu=2 [fc1000d] type=fc outputs=2546 inputs=hs2a,hs2b,hs2c,hs2d initW=0.01,0.01,0.01,0.01 gpu=3 [concat] type=concat inputs=fc1000a,fc1000b,fc1000c,fc1000d [probs] type=softmax inputs=concat gpu=0 [logprob] type=cost.logreg inputs=labels,probs gpu=0