AlexNet/multisoft-normed.py
Laurent El Shafey 9fdd561586 Initial commit
2024-12-10 08:56:11 -08:00

155 lines
No EOL
4.9 KiB
Python
Executable file

import sys
import numpy as np
import numpy.random as nr
from math import exp, log
def sumprod_brute(elts, size, fixed = -1):
if size > len(elts):
return 0
if fixed >= 0 and fixed < len(elts):
if size == 0:
return 0
z = 0
for s in xrange(size):
z += sumprod_brute(elts[:fixed], s) * sumprod_brute(elts[fixed+1:], size - 1 - s)
return z * exp(elts[fixed])
if size == 0:
return 1
return exp(elts[0]) * sumprod_brute(elts[1:], size - 1) + sumprod_brute(elts[1:], size)
# Returns sum over all subsets of given size of product
# of exp of elements.
# Also returns, for each index, the said sum given that the element
# at that index is in the subset.
def sumprod(elts, size, fixed = -1):
N = len(elts)
B = np.zeros((size + 1, N + 1)) # Backward lattice
B[0, N] = 1
logBNorms = np.zeros(N + 1)
# Backward pass
for i in xrange(N - 1, -1, -1):
B[0, i] = (i >= size and i > fixed) * B[0, i + 1] # This can get quite small
for s in xrange(max(1, size - i), size + 1):
B[s, i] = B[s - 1, i + 1] * exp(elts[i]) + B[s, i + 1] * (fixed != i)
norm = B[:,i].sum()
B[:,i] /= norm
logBNorms[i] = log(norm) + logBNorms[i + 1]
F = np.zeros((size + 1,)) # Forward column
F[0] = 1
# Forward pass
# Compute y_j for each j (marginal prob)
y = np.zeros(N)
logFNorm = -logBNorms[0] # Subtract log partition function
for i in xrange(1, N + 1):
for s in xrange(size, -1, -1):
if s < size:
y[i - 1] += F[s] * B[size - 1 - s, i]
if s > 0:
F[s] = F[s - 1] * exp(elts[i - 1]) + F[s] * (fixed != i - 1)
elif fixed == i - 1:
F[0] = 0
norm = F.sum()
F /= norm
y[i - 1] *= exp(elts[i - 1] + logBNorms[i] + logFNorm)
logFNorm += log(norm)
return y
# Computes log(exp(x) + exp(y))
def logadd(x, y):
if x == -np.inf and y == -np.inf:
return -np.inf
M = max(x,y)
m = min(x,y)
diff = M - m
return M if diff >= 15 else M + log(1 + exp(-diff))
# Returns sum over all subsets of given size of product
# of exp of elements.
# Also returns, for each index, the said sum given that the element
# at that index is in the subset.
def sumprod_logspace(elts, size, fixed = -1):
N = len(elts)
logB = -np.inf * np.ones((size + 1, N + 1)) # Backward lattice
logB[0, :] = 0
if fixed >= 0:
logB[0, :fixed + 1] = -np.inf
# Backward pass
for i in xrange(N - 1, -1, -1):
for s in xrange(max(1, size - i), size + 1):
logB[s, i] = logadd(logB[s - 1, i + 1] + elts[i], logB[s, i + 1] if fixed != i else -np.inf)
logF = -np.inf * np.ones((size + 1,)) # Forward column
logF[0] = 0
# Forward pass
# Compute y_j for each j (marginal prob)
logy = -np.inf * np.ones(N)
logFNorm = -logB[size, 0] # Subtract log partition function
for i in xrange(1, N + 1):
for s in xrange(size, -1, -1):
if s < size:
logy[i - 1] = logadd(logy[i - 1], logF[s] + logB[size - 1 - s, i])
if s > 0:
logF[s] = logadd(logF[s - 1] + elts[i - 1], logF[s] if fixed != i - 1 else -np.inf)
elif fixed == i - 1:
logF[0] = -np.inf
logy[i - 1] += elts[i - 1] + logFNorm
return np.exp(logy)
# Checks the gradient with respect to the objective
# E = log(y_i)
# where y_i = z_i/Z and i = the index of the correct label
def check_grad(elts, size, correct=0):
eps = 0.01
N = len(elts)
y = sumprod_logspace(elts, size)
Cy = sumprod_logspace(elts, size, fixed=correct)
grad = Cy - y
print "Analytic gradient: "
print grad
grad_num = np.zeros_like(grad)
for i in xrange(N):
tmp = elts[i]
elts[i] += eps
y_n = sumprod_logspace(elts, size)
grad_num[i] = (log(y_n[correct]) - log(y[correct])) / eps
elts[i] = tmp
print "Numeric gradient: "
print grad_num
if __name__ == "__main__":
nr.seed(2)
N = 5 # The number of outputs in the softmax
size = 2 # The size of the multisoft set
fixed = -2 # Force this index to be on (negative = don't)
elts = nr.randn(N)
elts -= elts.max()
elts = np.array([-0.071459650993347, -0.517264485359192, -0.128548145294189, -0.113207340240479 ,0.000000000000000])
print elts
dp_y = sumprod_logspace(elts, size, fixed=fixed)
bf_Z = sumprod_brute(elts, size, fixed=fixed)
print "Brute force Z: %f" % bf_Z
print "Brute force z/Z:"
bf_z = np.zeros(N)
for i in xrange(N):
for s in xrange(size):
bf_z[i] += sumprod_brute(elts[:i], s, fixed=fixed) * sumprod_brute(elts[i+1:], size - 1 - s, fixed=fixed-i-1)
bf_z[i] *= exp(elts[i])
print bf_z / bf_Z
print "DP z/Z:"
print dp_y
check_grad(elts, size, correct=3)