AlexNet/layers/layers-153.cfg
Laurent El Shafey 9fdd561586 Initial commit
2024-12-10 08:56:11 -08:00

308 lines
3 KiB
INI

[data]
type=data
dataIdx=0
[labels]
type=data
dataIdx=1
[conv1a]
type=conv
inputs=data
channels=3
filters=48
padding=0
stride=4
filterSize=11
initW=0.01
partialSum=11
sharedBiases=1
gpu=0
[conv1b]
type=conv
inputs=data
channels=3
filters=48
padding=0
stride=4
filterSize=11
initW=0.01
partialSum=11
sharedBiases=1
gpu=1
[rnorm1a]
type=cmrnorm
inputs=conv1a
channels=48
size=5
[rnorm1b]
type=cmrnorm
inputs=conv1b
channels=48
size=5
[pool1a]
type=pool
pool=max
inputs=rnorm1a
sizeX=3
stride=2
channels=48
neuron=relu
[pool1b]
type=pool
pool=max
inputs=rnorm1b
sizeX=3
stride=2
channels=48
neuron=relu
[conv2a]
type=conv
inputs=pool1a
filters=128
padding=2
stride=1
filterSize=5
channels=48
initW=0.01
initB=1
partialSum=9
sharedBiases=1
neuron=relu
gpu=0
[conv2b]
type=conv
inputs=pool1b
filters=128
padding=2
stride=1
filterSize=5
channels=48
initW=0.01
initB=1
partialSum=9
sharedBiases=1
neuron=relu
gpu=1
[rnorm2a]
type=cmrnorm
inputs=conv2a
channels=128
size=5
[rnorm2b]
type=cmrnorm
inputs=conv2b
channels=128
size=5
[cnorm2a]
type=rnorm
inputs=rnorm2a
channels=128
size=5
[cnorm2b]
type=rnorm
inputs=rnorm2b
channels=128
size=5
[pool2a]
type=pool
pool=max
inputs=cnorm2a
sizeX=3
stride=2
channels=128
[pool2b]
type=pool
pool=max
inputs=cnorm2b
sizeX=3
stride=2
channels=128
[conv3a]
type=conv
inputs=pool2a,pool2b
filters=192,192
padding=1,1
stride=1,1
filterSize=3,3
channels=128,128
initW=0.03,0.03
partialSum=13
sharedBiases=1
neuron=relu
gpu=0
[conv3b]
type=conv
inputs=pool2a,pool2b
filters=192,192
padding=1,1
stride=1,1
filterSize=3,3
channels=128,128
initW=0.03,0.03
partialSum=13
sharedBiases=1
neuron=relu
gpu=1
[conv4a]
type=conv
inputs=conv3a
filters=192
padding=1
stride=1
filterSize=3
channels=192
neuron=relu
initW=0.03
initB=1
partialSum=13
sharedBiases=1
[conv4b]
type=conv
inputs=conv3b
filters=192
padding=1
stride=1
filterSize=3
channels=192
neuron=relu
initW=0.03
initB=1
partialSum=13
sharedBiases=1
[conv5a]
type=conv
inputs=conv4a
filters=128
padding=1
stride=1
filterSize=3
channels=192
initW=0.03
initB=1
partialSum=13
groups=1
randSparse=0
[conv5b]
type=conv
inputs=conv4b
filters=128
padding=1
stride=1
filterSize=3
channels=192
initW=0.03
initB=1
partialSum=13
groups=1
randSparse=0
[pool3a]
type=pool
pool=max
inputs=conv5a
sizeX=3
stride=2
channels=128
neuron=relu
[pool3b]
type=pool
pool=max
inputs=conv5b
sizeX=3
stride=2
channels=128
neuron=relu
[fc2048a]
type=fc
inputs=pool3a,pool3b
outputs=2048
initW=0.01,0.01
initB=1
neuron=relu
gpu=0
[fc2048b]
type=fc
inputs=pool3a,pool3b
outputs=2048
initW=0.01,0.01
initB=1
neuron=relu
gpu=1
[hs1a]
type=hs
keep=0.5
inputs=fc2048a
[hs1b]
type=hs
keep=0.5
inputs=fc2048b
[fc2048ba]
type=fc
inputs=hs1a,hs1b
outputs=2048
initW=0.01,0.01
initB=1
neuron=relu
gpu=0
[fc2048bb]
type=fc
inputs=hs1b,hs1a
outputs=2048
initW=0.01,0.01
initB=1
neuron=relu
gpu=1
[hs2a]
type=hs
keep=0.5
inputs=fc2048ba
[hs2b]
type=hs
keep=0.5
inputs=fc2048bb
[fc1000]
type=fc
outputs=1000
inputs=hs2a,hs2b
initW=0.01,0.01
gpu=0
[probs]
type=softmax
inputs=fc1000
[logprob]
type=cost.logreg
inputs=labels,probs
gpu=0