Add DeepSeek MCP Server to integration list

This commit is contained in:
DMontgomery40 2025-01-30 13:33:17 -07:00
parent bd3ef90cc1
commit b9dbe5cb4b
3 changed files with 263 additions and 0 deletions

View file

@ -144,6 +144,10 @@ English/[简体中文](https://github.com/deepseek-ai/awesome-deepseek-integrati
<table>
<tr>
<td><img src="https://avatars.githubusercontent.com/u/182288589?s=200&v=4"> alt="Icon" width="64" height="auto" /></td>
<td> <a href="https://github.com/DMontgomery40/deepseek-mcp-server/blob/main/README.md">DeepSeek MCP Server</a> </td>
<td> Model Context Protocol server for DeepSeek's advanced language models.</td>
</tr>
<td> <img src="https://panda.fans/_assets/favicons/apple-touch-icon.png" alt="Icon" width="64" height="auto" /> </td>
<td> <a href="https://github.com/deepseek-ai/awesome-deepseek-integration/blob/main/docs/anda/README.md">Anda</a> </td>
<td>A Rust framework for AI agent development, designed to build a highly composable, autonomous, and perpetually memorizing network of AI agents.</td>

View file

@ -0,0 +1,131 @@
# DeepSeek MCP Server
A Model Context Protocol (MCP) server for the DeepSeek API, allowing seamless integration of DeepSeek's powerful language models with MCP-compatible applications like Claude Desktop.
## *Anonymously* use DeepSeek API -- Only a proxy is seen on the other side
<a href="https://glama.ai/mcp/servers/asht4rqltn"><img width="380" height="200" src="https://glama.ai/mcp/servers/asht4rqltn/badge" alt="DeepSeek Server MCP server" /></a>
<a href="https://smithery.ai/server/@dmontgomery40/deepseek-mcp-server"><img alt="Smithery Badge" src="https://smithery.ai/badge/@dmontgomery40/deepseek-mcp-server"></a>
[![npm version](https://img.shields.io/npm/v/deepseek-mcp-server)](https://www.npmjs.com/package/deepseek-mcp-server)
[![npm downloads](https://img.shields.io/npm/dm/deepseek-mcp-server)](https://www.npmjs.com/package/deepseek-mcp-server)
[![GitHub issues](https://img.shields.io/github/issues/DMontgomery40/deepseek-mcp-server)](https://github.com/DMontgomery40/deepseek-mcp-server/issues)
[![GitHub forks](https://img.shields.io/github/forks/DMontgomery40/deepseek-mcp-server)](https://github.com/DMontgomery40/deepseek-mcp-server/network)
[![GitHub stars](https://img.shields.io/github/stars/DMontgomery40/deepseek-mcp-server)](https://github.com/DMontgomery40/deepseek-mcp-server/stargazers)
[![GitHub license](https://img.shields.io/github/license/DMontgomery40/deepseek-mcp-server?color=blue)](https://github.com/DMontgomery40/deepseek-mcp-server/blob/main/LICENSE)
## Installation
### Installing via Smithery
To install DeepSeek MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@dmontgomery40/deepseek-mcp-server):
```bash
npx -y @smithery/cli install @dmontgomery40/deepseek-mcp-server --client claude
```
### Manual Installation
```bash
npm install -g deepseek-mcp-server
```
### Usage with Claude Desktop
Add this to your `claude_desktop_config.json`:
```json
{
"mcpServers": {
"deepseek": {
"command": "npx",
"args": [
"-y",
"deepseek-mcp-server"
],
"env": {
"DEEPSEEK_API_KEY": "your-api-key"
}
}
}
}
```
## Features
> Note: The server intelligently handles these natural language requests by mapping them to appropriate configuration changes. You can also query the current settings and available models:
- User: "What models are available?"
- Response: Shows list of available models and their capabilities via the models resource.
- User: "What configuration options do I have?"
- Response: Lists all available configuration options via the model-config resource.
- User: "What is the current temperature setting?"
- Response: Displays the current temperature setting.
- User: "Start a multi-turn conversation. With the following settings: model: 'deepseek-chat', make it not too creative, and
allow 8000 tokens."
- Response: *Starts a multi-turn conversation with the specified settings.*
### Automatic Model Fallback if R1 is down
- If the primary model (R1) is down (called `deepseek-reasoner` in the server), the server will automatically attempt to try with v3 (called `deepseek-chat` in the server)
> Note: You can switch back and forth anytime as well, by just giving your prompt and saying "use `deepseek-reasoner`" or "use `deepseek-chat`"
- V3 is recommended for general purpose use, while R1 is recommended for more technical and complex queries, primarily due to speed and token useage
### Resource discovery for available models and configurations:
* Custom model selection
* Temperature control (0.0 - 2.0)
* Max tokens limit
* Top P sampling (0.0 - 1.0)
* Presence penalty (-2.0 - 2.0)
* Frequency penalty (-2.0 - 2.0)
## Enhanced Conversation Features
**Multi-turn conversation support:**
* Maintains complete message history and context across exchanges
* Preserves configuration settings throughout the conversation
* Handles complex dialogue flows and follow-up chains automatically
This feature is particularly valuable for two key use cases:
1. **Training & Fine-tuning:**
Since DeepSeek is open source, many users are training their own versions. The multi-turn support provides properly formatted conversation data that's essential for training high-quality dialogue models.
2. **Complex Interactions:**
For production use, this helps manage longer conversations where context is crucial:
* Multi-step reasoning problems
* Interactive troubleshooting sessions
* Detailed technical discussions
* Any scenario where context from earlier messages impacts later responses
The implementation handles all context management and message formatting behind the scenes, letting you focus on the actual interaction rather than the technical details of maintaining conversation state.
## Testing with MCP Inspector
You can test the server locally using the MCP Inspector tool:
1. Build the server:
```bash
npm run build
```
2. Run the server with MCP Inspector:
```bash
# Make sure to specify the full path to the built server
npx @modelcontextprotocol/inspector node ./build/index.js
```
The inspector will open in your browser and connect to the server via stdio transport. You can:
- View available tools
- Test chat completions with different parameters
- Debug server responses
- Monitor server performance
Note: The server uses DeepSeek's R1 model (deepseek-reasoner) by default, which provides state-of-the-art performance for reasoning and general tasks.
## License
MIT

View file

@ -0,0 +1,128 @@
# DeepSeek MCP 服务器
这是一个适用于 DeepSeek API 的 Model Context Protocol (MCP) 服务器,可与 Claude Desktop 等兼容 MCP 的应用程序无缝集成,从而利用 DeepSeek 强大的语言模型。
## *匿名* 使用 DeepSeek API —— 另一端只会看到代理
<a href="https://glama.ai/mcp/servers/asht4rqltn"><img width="380" height="200" src="https://glama.ai/mcp/servers/asht4rqltn/badge" alt="DeepSeek MCP Server" /></a>
<a href="https://smithery.ai/server/@dmontgomery40/deepseek-mcp-server"><img alt="Smithery Badge" src="https://smithery.ai/badge/@dmontgomery40/deepseek-mcp-server"></a>
[![npm version](https://img.shields.io/npm/v/deepseek-mcp-server)](https://www.npmjs.com/package/deepseek-mcp-server)
[![npm downloads](https://img.shields.io/npm/dm/deepseek-mcp-server)](https://www.npmjs.com/package/deepseek-mcp-server)
[![GitHub issues](https://img.shields.io/github/issues/DMontgomery40/deepseek-mcp-server)](https://github.com/DMontgomery40/deepseek-mcp-server/issues)
[![GitHub forks](https://img.shields.io/github/forks/DMontgomery40/deepseek-mcp-server)](https://github.com/DMontgomery40/deepseek-mcp-server/network)
[![GitHub stars](https://img.shields.io/github/stars/DMontgomery40/deepseek-mcp-server)](https://github.com/DMontgomery40/deepseek-mcp-server/stargazers)
[![GitHub license](https://img.shields.io/github/license/DMontgomery40/deepseek-mcp-server?color=blue)](https://github.com/DMontgomery40/deepseek-mcp-server/blob/main/LICENSE)
## 安装
### 通过 Smithery 安装
要使用 Smithery 在 Claude Desktop 上自动安装 DeepSeek MCP Server请执行以下命令请确保已安装 `@smithery/cli`
`bash
npx -y @smithery/cli install @dmontgomery40/deepseek-mcp-server --client claude
`
### 手动安装
`bash
npm install -g deepseek-mcp-server
`
### 在 Claude Desktop 中使用
在你的 `claude_desktop_config.json` 中添加:
`json
{
"mcpServers": {
"deepseek": {
"command": "npx",
"args": [
"-y",
"deepseek-mcp-server"
],
"env": {
"DEEPSEEK_API_KEY": "your-api-key"
}
}
}
}
`
## 功能简介
> 注意:该服务器能够根据自然语言请求智能地将其映射到相应的配置更改。你也可以查询当前设置和可用模型:
- 用户:“有哪些可用的模型?”
- 响应:通过 models 资源列出可用模型及其功能。
- 用户:“我有哪些配置选项?”
- 响应:通过 model-config 资源列出所有可用的配置选项。
- 用户“当前的温度temperature设置是多少
- 响应:显示当前温度设置。
- 用户“开始一个多轮对话。使用如下设置model: 'deepseek-chat',创意度不要太高,并且允许 8000 个 token。”
- 响应:使用指定设置启动一个多轮对话。
### 当 R1 出现故障时自动回退到其他模型
- 如果主模型R1服务器中称为 `deepseek-reasoner`)出现故障,服务器会自动尝试使用 v3服务器中称为 `deepseek-chat`
- 你也可以随时在对话中切换,只需在对话中输入提示并说“使用 `deepseek-reasoner`”或“使用 `deepseek-chat`
- v3 更适用于通用场景R1 更适用于处理较为复杂的技术性问题,主要得益于速度和 token 使用的优化
### 资源发现:可用的模型和配置
- 自定义模型选择
- 温度控制0.0 - 2.0
- 最大 token 限制
- Top P 采样0.0 - 1.0
- 存在惩罚presence penalty-2.0 - 2.0
- 频率惩罚frequency penalty-2.0 - 2.0
## 增强的对话功能
**多轮对话支持:**
- 在多轮交互过程中维护完整的消息历史和上下文
- 在对话过程中保留配置设置
- 自动处理复杂的对话逻辑和后续请求
这一功能在以下两个主要场景中特别有价值:
1. **训练 & 微调:**
- 由于 DeepSeek 是开源的,很多用户正在训练自己的版本。多轮对话支持能够提供格式正确的对话数据,这对于训练高质量对话模型至关重要。
2. **复杂场景交互:**
- 在生产环境中,这种功能有助于管理需要保留上下文的更长对话,例如:
* 多步骤推理问题
* 交互式故障排查
* 详尽的技术讨论
* 任何需要利用早期消息上下文来影响后续响应的场景
该功能在幕后自动处理所有上下文管理和消息格式,你只需关注对话本身,无需担心维护对话状态的技术细节。
## 使用 MCP Inspector 进行测试
你可以使用 MCP Inspector 工具在本地测试服务器:
1. 构建服务器:
`bash
npm run build
`
2. 使用 MCP Inspector 启动服务器:
`bash
npx @modelcontextprotocol/inspector node ./build/index.js
`
MCP Inspector 将在你的浏览器中打开,并通过 stdio 传输连接到该服务器。你可以:
- 查看可用工具
- 使用不同参数测试对话补全
- 调试服务器响应
- 监控服务器性能
注意:服务器默认使用 DeepSeek 的 R1 模型(`deepseek-reasoner`),它在推理和通用任务方面具有最先进的性能。
## 许可证
MIT