mirror of
https://github.com/LouisShark/chatgpt_system_prompt.git
synced 2025-07-21 22:54:50 -04:00
MLX Guru - files
This commit is contained in:
parent
bd0099ad1f
commit
f96f19d404
8 changed files with 1579 additions and 0 deletions
644
prompts/gpts/knowledge/MLX Guru/usage.txt
Normal file
644
prompts/gpts/knowledge/MLX Guru/usage.txt
Normal file
|
@ -0,0 +1,644 @@
|
|||
.. _function_transforms:
|
||||
|
||||
Function Transforms
|
||||
===================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
MLX uses composable function transformations for automatic differentiation and
|
||||
vectorization. The key idea behind composable function transformations is that
|
||||
every transformation returns a function which can be further transformed.
|
||||
|
||||
Here is a simple example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> dfdx = mx.grad(mx.sin)
|
||||
>>> dfdx(mx.array(mx.pi))
|
||||
array(-1, dtype=float32)
|
||||
>>> mx.cos(mx.array(mx.pi))
|
||||
array(-1, dtype=float32)
|
||||
|
||||
|
||||
The output of :func:`grad` on :func:`sin` is simply another function. In this
|
||||
case it is the gradient of the sine function which is exactly the cosine
|
||||
function. To get the second derivative you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> d2fdx2 = mx.grad(mx.grad(mx.sin))
|
||||
>>> d2fdx2(mx.array(mx.pi / 2))
|
||||
array(-1, dtype=float32)
|
||||
>>> mx.sin(mx.array(mx.pi / 2))
|
||||
array(1, dtype=float32)
|
||||
|
||||
Using :func:`grad` on the output of :func:`grad` is always ok. You keep
|
||||
getting higher order derivatives.
|
||||
|
||||
Any of the MLX function transformations can be composed in any order to any
|
||||
depth. To see the complete list of function transformations check-out the
|
||||
:ref:`API documentation <transforms>`. See the following sections for more
|
||||
information on :ref:`automatic differentiaion <auto diff>` and
|
||||
:ref:`automatic vectorization <vmap>`.
|
||||
|
||||
Automatic Differentiation
|
||||
-------------------------
|
||||
|
||||
.. _auto diff:
|
||||
|
||||
Automatic differentiation in MLX works on functions rather than on implicit
|
||||
graphs.
|
||||
|
||||
.. note::
|
||||
|
||||
If you are coming to MLX from PyTorch, you no longer need functions like
|
||||
``backward``, ``zero_grad``, and ``detach``, or properties like
|
||||
``requires_grad``.
|
||||
|
||||
The most basic example is taking the gradient of a scalar-valued function as we
|
||||
saw above. You can use the :func:`grad` and :func:`value_and_grad` function to
|
||||
compute gradients of more complex functions. By default these functions compute
|
||||
the gradient with respect to the first argument:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def loss_fn(w, x, y):
|
||||
return mx.mean(mx.square(w * x - y))
|
||||
|
||||
w = mx.array(1.0)
|
||||
x = mx.array([0.5, -0.5])
|
||||
y = mx.array([1.5, -1.5])
|
||||
|
||||
# Computes the gradient of loss_fn with respect to w:
|
||||
grad_fn = mx.grad(loss_fn)
|
||||
dloss_dw = grad_fn(w, x, y)
|
||||
# Prints array(-1, dtype=float32)
|
||||
print(dloss_dw)
|
||||
|
||||
# To get the gradient with respect to x we can do:
|
||||
grad_fn = mx.grad(loss_fn, argnums=1)
|
||||
dloss_dx = grad_fn(w, x, y)
|
||||
# Prints array([-1, 1], dtype=float32)
|
||||
print(dloss_dx)
|
||||
|
||||
|
||||
One way to get the loss and gradient is to call ``loss_fn`` followed by
|
||||
``grad_fn``, but this can result in a lot of redundant work. Instead, you
|
||||
should use :func:`value_and_grad`. Continuing the above example:
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Computes the gradient of loss_fn with respect to w:
|
||||
loss_and_grad_fn = mx.value_and_grad(loss_fn)
|
||||
loss, dloss_dw = loss_and_grad_fn(w, x, y)
|
||||
|
||||
# Prints array(1, dtype=float32)
|
||||
print(loss)
|
||||
|
||||
# Prints array(-1, dtype=float32)
|
||||
print(dloss_dw)
|
||||
|
||||
|
||||
You can also take the gradient with respect to arbitrarily nested Python
|
||||
containers of arrays (specifically any of :obj:`list`, :obj:`tuple`, or
|
||||
:obj:`dict`).
|
||||
|
||||
Suppose we wanted a weight and a bias parameter in the above example. A nice
|
||||
way to do that is the following:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def loss_fn(params, x, y):
|
||||
w, b = params["weight"], params["bias"]
|
||||
h = w * x + b
|
||||
return mx.mean(mx.square(h - y))
|
||||
|
||||
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
|
||||
x = mx.array([0.5, -0.5])
|
||||
y = mx.array([1.5, -1.5])
|
||||
|
||||
# Computes the gradient of loss_fn with respect to both the
|
||||
# weight and bias:
|
||||
grad_fn = mx.grad(loss_fn)
|
||||
grads = grad_fn(params, x, y)
|
||||
|
||||
# Prints
|
||||
# {'weight': array(-1, dtype=float32), 'bias': array(0, dtype=float32)}
|
||||
print(grads)
|
||||
|
||||
Notice the tree structure of the parameters is preserved in the gradients.
|
||||
|
||||
In some cases you may want to stop gradients from propagating through a
|
||||
part of the function. You can use the :func:`stop_gradient` for that.
|
||||
|
||||
|
||||
Automatic Vectorization
|
||||
-----------------------
|
||||
|
||||
.. _vmap:
|
||||
|
||||
Use :func:`vmap` to automate vectorizing complex functions. Here we'll go
|
||||
through a basic and contrived example for the sake of clarity, but :func:`vmap`
|
||||
can be quite powerful for more complex functions which are difficult to optimize
|
||||
by hand.
|
||||
|
||||
.. warning::
|
||||
|
||||
Some operations are not yet supported with :func:`vmap`. If you encounter an error
|
||||
like: ``ValueError: Primitive's vmap not implemented.`` file an `issue
|
||||
<https://github.com/ml-explore/mlx/issues>`_ and include your function.
|
||||
We will prioritize including it.
|
||||
|
||||
A naive way to add the elements from two sets of vectors is with a loop:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
xs = mx.random.uniform(shape=(4096, 100))
|
||||
ys = mx.random.uniform(shape=(100, 4096))
|
||||
|
||||
def naive_add(xs, ys):
|
||||
return [xs[i] + ys[:, i] for i in range(xs.shape[1])]
|
||||
|
||||
Instead you can use :func:`vmap` to automatically vectorize the addition:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Vectorize over the second dimension of x and the
|
||||
# first dimension of y
|
||||
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
|
||||
|
||||
The ``in_axes`` parameter can be used to specify which dimensions of the
|
||||
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
|
||||
where the vectorized axes should be in the outputs.
|
||||
|
||||
Let's time these two different versions:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import timeit
|
||||
|
||||
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
|
||||
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
|
||||
|
||||
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
|
||||
vectorized version takes only ``0.025`` seconds, more than ten times faster.
|
||||
|
||||
Of course, this operation is quite contrived. A better approach is to simply do
|
||||
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.
|
||||
.. _indexing:
|
||||
|
||||
Indexing Arrays
|
||||
===============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
For the most part, indexing an MLX :obj:`array` works the same as indexing a
|
||||
NumPy :obj:`numpy.ndarray`. See the `NumPy documentation
|
||||
<https://numpy.org/doc/stable/user/basics.indexing.html>`_ for more details on
|
||||
how that works.
|
||||
|
||||
For example, you can use regular integers and slices (:obj:`slice`) to index arrays:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(10)
|
||||
>>> arr[3]
|
||||
array(3, dtype=int32)
|
||||
>>> arr[-2] # negative indexing works
|
||||
array(8, dtype=int32)
|
||||
>>> arr[2:8:2] # start, stop, stride
|
||||
array([2, 4, 6], dtype=int32)
|
||||
|
||||
For multi-dimensional arrays, the ``...`` or :obj:`Ellipsis` syntax works as in NumPy:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(8).reshape(2, 2, 2)
|
||||
>>> arr[:, :, 0]
|
||||
array(3, dtype=int32)
|
||||
array([[0, 2],
|
||||
[4, 6]], dtype=int32
|
||||
>>> arr[..., 0]
|
||||
array([[0, 2],
|
||||
[4, 6]], dtype=int32
|
||||
|
||||
You can index with ``None`` to create a new axis:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(8)
|
||||
>>> arr.shape
|
||||
[8]
|
||||
>>> arr[None].shape
|
||||
[1, 8]
|
||||
|
||||
|
||||
You can also use an :obj:`array` to index another :obj:`array`:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(10)
|
||||
>>> idx = mx.array([5, 7])
|
||||
>>> arr[idx]
|
||||
array([5, 7], dtype=int32)
|
||||
|
||||
Mixing and matching integers, :obj:`slice`, ``...``, and :obj:`array` indices
|
||||
works just as in NumPy.
|
||||
|
||||
Other functions which may be useful for indexing arrays are :func:`take` and
|
||||
:func:`take_along_axis`.
|
||||
|
||||
Differences from NumPy
|
||||
----------------------
|
||||
|
||||
.. Note::
|
||||
|
||||
MLX indexing is different from NumPy indexing in two important ways:
|
||||
|
||||
* Indexing does not perform bounds checking. Indexing out of bounds is
|
||||
undefined behavior.
|
||||
* Boolean mask based indexing is not yet supported.
|
||||
|
||||
The reason for the lack of bounds checking is that exceptions cannot propagate
|
||||
from the GPU. Performing bounds checking for array indices before launching the
|
||||
kernel would be extremely inefficient.
|
||||
|
||||
Indexing with boolean masks is something that MLX may support in the future. In
|
||||
general, MLX has limited support for operations for which outputs
|
||||
*shapes* are dependent on input *data*. Other examples of these types of
|
||||
operations which MLX does not yet support include :func:`numpy.nonzero` and the
|
||||
single input version of :func:`numpy.where`.
|
||||
|
||||
In Place Updates
|
||||
----------------
|
||||
|
||||
In place updates to indexed arrays are possible in MLX. For example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> a[2] = 0
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Just as in NumPy, in place updates will be reflected in all references to the
|
||||
same array:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Transformations of functions which use in-place updates are allowed and work as
|
||||
expected. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, idx):
|
||||
x[idx] = 2.0
|
||||
return x.sum()
|
||||
|
||||
dfdx = mx.grad(fun)(mx.array([1.0, 2.0, 3.0]), mx.array([1]))
|
||||
print(dfdx) # Prints: array([1, 0, 1], dtype=float32)
|
||||
|
||||
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
|
||||
and ones elsewhere.
|
||||
.. _lazy eval:
|
||||
|
||||
Lazy Evaluation
|
||||
===============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
Why Lazy Evaluation
|
||||
-------------------
|
||||
|
||||
When you perform operations in MLX, no computation actually happens. Instead a
|
||||
compute graph is recorded. The actual computation only happens if an
|
||||
:func:`eval` is performed.
|
||||
|
||||
MLX uses lazy evaluation because it has some nice features, some of which we
|
||||
describe below.
|
||||
|
||||
Transforming Compute Graphs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Lazy evaluation let's us record a compute graph without actually doing any
|
||||
computations. This is useful for function transformations like :func:`grad` and
|
||||
:func:`vmap` and graph optimizations like :func:`simplify`.
|
||||
|
||||
Currently, MLX does not compile and rerun compute graphs. They are all
|
||||
generated dynamically. However, lazy evaluation makes it much easier to
|
||||
integrate compilation for future performance enhancements.
|
||||
|
||||
Only Compute What You Use
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In MLX you do not need to worry as much about computing outputs that are never
|
||||
used. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
a = fun1(x)
|
||||
b = expensive_fun(a)
|
||||
return a, b
|
||||
|
||||
y, _ = fun(x)
|
||||
|
||||
Here, we never actually compute the output of ``expensive_fun``. Use this
|
||||
pattern with care though, as the graph of ``expensive_fun`` is still built, and
|
||||
that has some cost associated to it.
|
||||
|
||||
Similarly, lazy evaluation can be beneficial for saving memory while keeping
|
||||
code simple. Say you have a very large model ``Model`` derived from
|
||||
:obj:`mlx.nn.Module`. You can instantiate this model with ``model = Model()``.
|
||||
Typically, this will initialize all of the weights as ``float32``, but the
|
||||
initialization does not actually compute anything until you perform an
|
||||
:func:`eval`. If you update the model with ``float16`` weights, your maximum
|
||||
consumed memory will be half that required if eager computation was used
|
||||
instead.
|
||||
|
||||
This pattern is simple to do in MLX thanks to lazy computation:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = Model() # no memory used yet
|
||||
model.load_weights("weights_fp16.safetensors")
|
||||
|
||||
When to Evaluate
|
||||
----------------
|
||||
|
||||
A common question is when to use :func:`eval`. The trade-off is between
|
||||
letting graphs get too large and not batching enough useful work.
|
||||
|
||||
For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
for _ in range(100):
|
||||
a = a + b
|
||||
mx.eval(a)
|
||||
b = b * 2
|
||||
mx.eval(b)
|
||||
|
||||
This is a bad idea because there is some fixed overhead with each graph
|
||||
evaluation. On the other hand, there is some slight overhead which grows with
|
||||
the compute graph size, so extremely large graphs (while computationally
|
||||
correct) can be costly.
|
||||
|
||||
Luckily, a wide range of compute graph sizes work pretty well with MLX:
|
||||
anything from a few tens of operations to many thousands of operations per
|
||||
evaluation should be okay.
|
||||
|
||||
Most numerical computations have an iterative outer loop (e.g. the iteration in
|
||||
stochastic gradient descent). A natural and usually efficient place to use
|
||||
:func:`eval` is at each iteration of this outer loop.
|
||||
|
||||
Here is a concrete example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
for batch in dataset:
|
||||
|
||||
# Nothing has been evaluated yet
|
||||
loss, grad = value_and_grad_fn(model, batch)
|
||||
|
||||
# Still nothing has been evaluated
|
||||
optimizer.update(model, grad)
|
||||
|
||||
# Evaluate the loss and the new parameters which will
|
||||
# run the full gradient computation and optimizer update
|
||||
mx.eval(loss, model.parameters())
|
||||
|
||||
|
||||
An important behavior to be aware of is when the graph will be implicitly
|
||||
evaluated. Anytime you ``print`` an array, convert it to an
|
||||
:obj:`numpy.ndarray`, or otherwise access it's memory via :obj:`memoryview`,
|
||||
the graph will be evaluated. Saving arrays via :func:`save` (or any other MLX
|
||||
saving functions) will also evaluate the array.
|
||||
|
||||
|
||||
Calling :func:`array.item` on a scalar array will also evaluate it. In the
|
||||
example above, printing the loss (``print(loss)``) or adding the loss scalar to
|
||||
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
|
||||
these lines are before ``mx.eval(loss, model.parameters())`` then this
|
||||
will be a partial evaluation, computing only the forward pass.
|
||||
|
||||
Also, calling :func:`eval` on an array or set of arrays multiple times is
|
||||
perfectly fine. This is effectively a no-op.
|
||||
|
||||
.. warning::
|
||||
|
||||
Using scalar arrays for control-flow will cause an evaluation.
|
||||
|
||||
Here is an example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
h, y = first_layer(x)
|
||||
if y > 0: # An evaluation is done here!
|
||||
z = second_layer_a(h)
|
||||
else:
|
||||
z = second_layer_b(h)
|
||||
return z
|
||||
|
||||
Using arrays for control flow should be done with care. The above example works
|
||||
and can even be used with gradient transformations. However, this can be very
|
||||
inefficient if evaluations are done too frequently.
|
||||
.. _numpy:
|
||||
|
||||
Conversion to NumPy and Other Frameworks
|
||||
========================================
|
||||
|
||||
MLX array implements the `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
Let's convert an array to NumPy and back.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
|
||||
a = mx.arange(3)
|
||||
b = np.array(a) # copy of a
|
||||
c = mx.array(b) # copy of b
|
||||
|
||||
.. note::
|
||||
|
||||
Since NumPy does not support ``bfloat16`` arrays, you will need to convert to ``float16`` or ``float32`` first:
|
||||
``np.array(a.astype(mx.float32))``.
|
||||
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118 buffer format string does not match the dtype V item size 0.``
|
||||
|
||||
By default, NumPy copies data to a new array. This can be prevented by creating an array view:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = mx.arange(3)
|
||||
a_view = np.array(a, copy=False)
|
||||
print(a_view.flags.owndata) # False
|
||||
a_view[0] = 1
|
||||
print(a[0].item()) # 1
|
||||
|
||||
A NumPy array view is a normal NumPy array, except that it does not own its memory.
|
||||
This means writing to the view is reflected in the original array.
|
||||
|
||||
While this is quite powerful to prevent copying arrays, it should be noted that external changes to the memory of arrays cannot be reflected in gradients.
|
||||
|
||||
Let's demonstrate this in an example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(x):
|
||||
x_view = np.array(x, copy=False)
|
||||
x_view[:] *= x_view # modify memory without telling mx
|
||||
return x.sum()
|
||||
|
||||
x = mx.array([3.0])
|
||||
y, df = mx.value_and_grad(f)(x)
|
||||
print("f(x) = x² =", y.item()) # 9.0
|
||||
print("f'(x) = 2x !=", df.item()) # 1.0
|
||||
|
||||
|
||||
The function ``f`` indirectly modifies the array ``x`` through a memory view.
|
||||
However, this modification is not reflected in the gradient, as seen in the last line outputting ``1.0``,
|
||||
representing the gradient of the sum operation alone.
|
||||
The squaring of ``x`` occurs externally to MLX, meaning that no gradient is incorporated.
|
||||
It's important to note that a similar issue arises during array conversion and copying.
|
||||
For instance, a function defined as ``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
||||
even though no in-place operations on MLX memory are executed.
|
||||
|
||||
PyTorch
|
||||
-------
|
||||
|
||||
.. warning::
|
||||
|
||||
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
||||
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
||||
|
||||
PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
|
||||
a = mx.arange(3)
|
||||
b = torch.tensor(memoryview(a))
|
||||
c = mx.array(b.numpy())
|
||||
|
||||
Conversion from PyTorch tensors back to arrays must be done via intermediate NumPy arrays with ``numpy()``.
|
||||
|
||||
JAX
|
||||
---
|
||||
JAX fully supports the buffer protocol.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import jax.numpy as jnp
|
||||
|
||||
a = mx.arange(3)
|
||||
b = jnp.array(a)
|
||||
c = mx.array(b)
|
||||
|
||||
TensorFlow
|
||||
----------
|
||||
|
||||
TensorFlow supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import tensorflow as tf
|
||||
|
||||
a = mx.arange(3)
|
||||
b = tf.constant(memoryview(a))
|
||||
c = mx.array(b)
|
||||
.. _saving_and_loading:
|
||||
|
||||
Saving and Loading Arrays
|
||||
=========================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
MLX supports multiple array serialization formats.
|
||||
|
||||
.. list-table:: Serialization Formats
|
||||
:widths: 20 8 25 25
|
||||
:header-rows: 1
|
||||
|
||||
* - Format
|
||||
- Extension
|
||||
- Function
|
||||
- Notes
|
||||
* - NumPy
|
||||
- ``.npy``
|
||||
- :func:`save`
|
||||
- Single arrays only
|
||||
* - NumPy archive
|
||||
- ``.npz``
|
||||
- :func:`savez` and :func:`savez_compressed`
|
||||
- Multiple arrays
|
||||
* - Safetensors
|
||||
- ``.safetensors``
|
||||
- :func:`save_safetensors`
|
||||
- Multiple arrays
|
||||
* - GGUF
|
||||
- ``.gguf``
|
||||
- :func:`save_gguf`
|
||||
- Multiple arrays
|
||||
|
||||
The :func:`load` function will load any of the supported serialization
|
||||
formats. It determines the format from the extensions. The output of
|
||||
:func:`load` depends on the format.
|
||||
|
||||
Here's an example of saving a single array to a file:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1.0])
|
||||
>>> mx.save("array", a)
|
||||
|
||||
The array ``a`` will be saved in the file ``array.npy`` (notice the extension
|
||||
is automatically added). Including the extension is optional; if it is missing
|
||||
it will be added. You can load the array with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> mx.load("array.npy", a)
|
||||
array([1], dtype=float32)
|
||||
|
||||
Here's an example of saving several arrays to a single file:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1.0])
|
||||
>>> b = mx.array([2.0])
|
||||
>>> mx.savez("arrays", a, b=b)
|
||||
|
||||
For compatibility with :func:`numpy.savez` the MLX :func:`savez` takes arrays
|
||||
as arguments. If the keywords are missing, then default names will be
|
||||
provided. This can be loaded with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> mx.load("arrays.npz")
|
||||
{'b': array([2], dtype=float32), 'arr_0': array([1], dtype=float32)}
|
||||
|
||||
In this case :func:`load` returns a dictionary of names to arrays.
|
||||
|
||||
The functions :func:`save_safetensors` and :func:`save_gguf` are similar to
|
||||
:func:`savez`, but they take as input a :obj:`dict` of string names to arrays:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1.0])
|
||||
>>> b = mx.array([2.0])
|
||||
>>> mx.save_safetensors("arrays", {"a": a, "b": b})
|
Loading…
Add table
Add a link
Reference in a new issue