

Introduction to Dynamic Recompilation

in Emulation

Core Ideas explained within a Chip 8 context, using the x86-32 Instruction Set.

To be read in conjunction with source code available at:
https://github.com/marco9999/Super8_jitcore/tree/edu
(Super8_jitcore repo & edu branch.)

Written by:

Marco Satti (marco.satti9999@gmail.com)

Version 1.1

https://github.com/marco9999/Super8_jitcore/tree/edu
mailto:marco.satti9999@gmail.com

Introduction to Dynamic Recompilation in Emulation Version 1.1

2

Contents
i. Licence ... 4

ii. Version History .. 5

iii. Terminology .. 6

iv. Helpful Resources .. 7

v. Prerequisites ... 9

vi. Purpose, Aim & Scope ... 11

vii. File Details ... 12

1. Introduction .. 15

2. Core Concepts ... 16

2.1. Caches ... 16

2.2. Emitter .. 16

2.3. Translator .. 16

2.4. Relationship Between Caches, Emitter and Translator .. 16

2.5. Dispatcher Loop .. 17

2.6. Interrupts .. 18

2.7. Jump Table .. 19

3. Dynamic Recompiler – Main Structure ... 20

3.1. Interpreter Structure Review .. 20

3.2. Dynamic Recompiler Structure Overview ... 21

3.3. Running Native Code... 21

4. Implementation Issues & Details .. 24

4.1. Jumps .. 24

4.1.1. Jumps Problem .. 24

4.1.2. Jumps Solution – Part 1 ... 25

4.1.3. Jumps Solution – Part 2 ... 26

4.2. Cache Code Generation .. 27

4.2.1. Cache Code Generation Problem .. 27

4.2.2. Cache Code Generation Solution .. 27

4.3. Inter-cache Jumps ... 27

4.3.1. Inter-cache Jumps Problem .. 27

4.3.2. Inter-cache Jumps Solution ... 28

5. Handling Interrupts ... 29

5.1. Common Details .. 29

5.2. Interrupt Details: PREPARE_FOR_JUMP ... 29

5.2.1. Translator Loop ... 30

Introduction to Dynamic Recompilation in Emulation Version 1.1

3

5.3. Interrupt Details: USE_INTERPRETER .. 30

5.4. Interrupt Details: OUT_OF_CODE ... 31

5.4.1. Differences from Other Interrupts .. 32

6. Current Issues .. 33

6.1. Self Modifying Code .. 33

7. Conclusion ... 34

Introduction to Dynamic Recompilation in Emulation Version 1.1

4

i. Licence
This document follows the CC BY-NC-SA 4.0 licence. See the LICENCE file which should have been

included with this. You can also obtain a copy of the licence at the following website:

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

You may find a summarised version of the licence at the following webpage. It is not a substitute for

the full licence.

http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction to Dynamic Recompilation in Emulation Version 1.1

5

ii. Version History
Version 1.0 (originally called Revision A) – 2016-03-07. First release.

Version 1.1 – 2016-03-11. Added in a list of files and what they are used for (File Details, Section vii).

Added in Version History (Section ii). Added in text styling for better reading (see Terminology, Section

iii).

Introduction to Dynamic Recompilation in Emulation Version 1.1

6

iii. Terminology
Target Architecture The machine you want to emulate (eg: Chip8).

Client Architecture The machine the emulation will be performed on (eg: x86 processor).

Dynamic Recompilation The process of recompiling code from the target to client

architecture, which is done during execution.

Static Recompilation The process of recompiling code from the target to client

architecture, which is all done before execution.

Interpreter The most basic form of emulation, which is magnitudes slower than

recompilation methods. Involves a loop which fetches and decodes

opcodes one by one.

Nibble A single hex (base-16) code that represents half of a byte (ie: the high

nibble of 0xD5 is D)

Emitter Commonly implemented as a client helper class, this translates

(human) assembly language (ie: MOV eax, edx) into raw bytes

(0x89, 0xC2).

Cache A temporary memory block that is used to hold and execute emitted

bytes (which is translated code from target to client).

Note that any assembly shown in this document is in Intel syntax, where an opcode (that permits) is

followed by the destination and then followed by the source.

Throughout the document, there are different text styles to indicate the category they belong to:

Category Style Example

C/C++ code emulationLoop()

Chip8 code DXY0

Interrupt code OUT_OF_CODE

x86 assembly code JMP PTR32

Introduction to Dynamic Recompilation in Emulation Version 1.1

7

iv. Helpful Resources
The resources here relate to both dynamic recompilation and the Chip8. I recommend you read these

in conjunction with this document, however it is entirely optional, as the important parts will be

covered again. I would like to thank all of these people who have helped me too within these links!

Dynamic Recompilation:

Dynamic Recompilation

Introduction & Building

an Emitter

Article goes over some concepts of a Dynamic Recompiler and goes

through the caches, emitter and translator concepts (also explained

later):

http://www.multigesture.net/wp-

content/uploads/mirror/zenogais/Dynamic%20Recompiler.html

In hindsight, this is an excellent resource (especially the ‘basic

components of a recompiler’), although it may be a bit confusing for

beginners (and it was for me initially).

NGEMU forums: Dynamic

Recompilation – An

Introduction by M.I.K.e7

Good resource explaining the transition from interpreter to dynamic

recompilation.

http://ngemu.com/threads/dynamic-recompilation-an-

introduction.20491/

PCSX2 forums:

Introduction to Dynamic

Recompilation by

cottonvibes

Good resource from an experienced developer, from the popular PS2

emulator PCSX2:

http://forums.pcsx2.net/Thread-blog-Introduction-to-Dynamic-

Recompilation

Mupen64Plus Dynamic

Recompiler Wiki page

Describes the inner workings of the Mupen64Plus N64 emulator:

http://pandorawiki.org/Mupen64plus_dynamic_recompiler

In addition to these, you may also want to look up just-in-time compilation, which is a synonym for

dynamic recompilation in the context of emulation.

Chip8:

Building an Interpretive

Emulator

Article contains a step-by-step look into an interpreter emulator for

the Chip8:

http://www.multigesture.net/articles/how-to-write-an-emulator-

chip-8-interpreter/

http://www.multigesture.net/wp-content/uploads/mirror/zenogais/Dynamic%20Recompiler.html
http://www.multigesture.net/wp-content/uploads/mirror/zenogais/Dynamic%20Recompiler.html
http://ngemu.com/threads/dynamic-recompilation-an-introduction.20491/
http://ngemu.com/threads/dynamic-recompilation-an-introduction.20491/
http://forums.pcsx2.net/Thread-blog-Introduction-to-Dynamic-Recompilation
http://forums.pcsx2.net/Thread-blog-Introduction-to-Dynamic-Recompilation
http://pandorawiki.org/Mupen64plus_dynamic_recompiler
http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/
http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/

Introduction to Dynamic Recompilation in Emulation Version 1.1

8

Specifications Wikipedia article contains a list of the opcodes used and an

explanation:

https://en.wikipedia.org/wiki/CHIP-8

See also this excellent website for a more in depth look at the specs:

http://devernay.free.fr/hacks/chip8/C8TECH10.HTM

(may need to use Google cached copy, website is offline as of

14/11/15)

Author’s own interpreter

& dynamic recompiler

emulators (source code)

https://github.com/marco9999/Super8 (interpreter)

https://github.com/marco9999/Super8_jitcore (dynamic recompiler)

https://en.wikipedia.org/wiki/CHIP-8
http://devernay.free.fr/hacks/chip8/C8TECH10.HTM
https://github.com/marco9999/Super8
https://github.com/marco9999/Super8_jitcore

Introduction to Dynamic Recompilation in Emulation Version 1.1

9

v. Prerequisites
Most of this document relies on the following things below. Please make sure you are familiar with

them before continuing.

 Assembly knowledge in x86-32.

This is one of the main bits of knowledge you will need. The goal of this document is not to teach you

about assembly or the x86 instruction set, but it will use it. A couple of great resources can be found

here, which I have also used:

General info about x86 assembly: https://en.wikibooks.org/wiki/X86_Assembly

x86 instruction set reference: http://ref.x86asm.net/coder32.html

Encoding x86 instructions: http://www.c-jump.com/CIS77/CPU/x86/index.html

MSDN information about x86 architecture:

https://msdn.microsoft.com/en-us/library/windows/hardware/ff558894(v=vs.85).aspx

 Knowledge about the target architecture (eg: Chip8 specifications)

In order to emulate the target, you will need to know about how the target works – specification

documents are your friend! Fortunately for something like the Chip8, ample documentation is freely

available, could possibly be implemented based off a single Wikipedia article! See here for an example

of what you might need:

Chip8 information: https://en.wikipedia.org/wiki/CHIP-8

You may not be so lucky with other target architectures however, and additional real world tests

performed on the target may be needed.

 Good C & C++ knowledge.

Need to be familiar with the language, especially with pointers, as they will be used extensively.

Although the example could be completed entirely in C, the use of classes provided though C++ is very

helpful and heavily encouraged (and the language the example was done in). There are many

resources on the internet to teach you about these languages through any search engine.

You may use another language if you are comfortable adapting code from C++, however it must have

support for running native code at the very least (eg: possibly Java Native Interface, although I have

not looked into it).

 Calling convention knowledge.

On Windows systems, compiling a C++ function call on Visual Studio (that is not a class member) uses

the CDECL calling convention by default, which relates to how the stack is set-up. See these pages for

info:

General info about calling conventions: https://en.wikipedia.org/wiki/X86_calling_conventions

MSDN article that contains useful information about registers in the x86 architecture and how they

are used in calls:

https://msdn.microsoft.com/en-us/library/windows/hardware/ff561502(v=vs.85).aspx

https://en.wikibooks.org/wiki/X86_Assembly
http://ref.x86asm.net/coder32.html
http://www.c-jump.com/CIS77/CPU/x86/index.html
https://msdn.microsoft.com/en-us/library/windows/hardware/ff558894(v=vs.85).aspx
https://en.wikipedia.org/wiki/CHIP-8
https://en.wikipedia.org/wiki/X86_calling_conventions
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561502(v=vs.85).aspx

Introduction to Dynamic Recompilation in Emulation Version 1.1

10

 How (basic) CPUs work.

This relates to both the client and target architectures. In the case of the Chip8, it is important to know

what Opcode, Program Counter (PC), etc mean. Generally, most CPUs all share some common

elements. You can use a search engine to look up how these work.

 Build an emulator using the interpreter method.

While not strictly required, this will help you understand and gain some experience in emulation.

Doing this will enable you to get more out of this document and focus on learning about dynamic

recompilation. If you have not built an interpreter yet, I suggest making one for the Chip8 as it is easy.

 A development environment

I am using a Windows 10 x86-64 system (although we will be doing everything in 32-bit) with Visual

Studio 2015 Community Edition. For graphics, sound and input you may want to use some other

libraries, such as SDL, but this document does not cover that.

 Time and willingness.

This is quite advanced stuff! Do not expect to be an expert after reading this, or expect it to work in

the first go. I encourage you to go and look at the source code of other emulators too, such as PCSX2

or Dolphin, if you are stuck on an idea. They may provide a different view or implementation.

Introduction to Dynamic Recompilation in Emulation Version 1.1

11

vi. Purpose, Aim & Scope
In terms of dynamic recompilation, by the end of this document you should be familiar with:

1. What dynamic recompilation is and the advantages over a traditional interpreter approach.
2. How to handle problems involved in dynamic recompilation based around a Chip8 context.
3. The basic structure involved in dynamic recompilation, again based around a Chip8 context.

In addition, example source code where relevant will be provided based on the Chip8 system. You will

need to consult the Super8_jitcore repo on my GitHub (marco9999) account for the full source code

(the edu branch should be consulted). Most of the code provided in here is where concepts need to

be explained a bit more.

This document does NOT provide the following (also look at Prerequisites):

1. Teach you about the Chip8. While it is a definitely a non-complex system to learn about, it
does not go in depth at all about the system, and it is assumed you can follow what is
happening using examples though a Chip8 context.

2. Teach you about the interpretation method. While it does recap the process, it does not
explain the elements or go into depth. Making sure you understand this will set you up to
understand the rest of this document.

3. C++ or Assembly explanations. It only uses the languages to code the Chip8 example in. This
also includes how to encode x86 instructions in raw bytes.

4. Terminology explanations. Please look up in a search anything you do not understand, as it is
most likely important. If you don’t understand for example what an opcode is, go do some
research before starting. Some of the more important ones have been provided at the start.

5. Optimisations. There is probably lots of opportunity to do optimisations in the source code,
but it will be focused on being helpful rather than on speed.

6. A comparison to other emulators. Although some core concepts might be the same, the
implementations may be vastly different.

7. Setting up a development environment or anything related to it.

And most importantly:

8. This document DOES NOT COVER EVERYTHING! There are MANY different ways to implement
a dynamic recompiler – this is just one of them. Take time to research other emulators if you
are stuck on a problem as the answer might already be there.

Introduction to Dynamic Recompilation in Emulation Version 1.1

12

vii. File Details
This section lists the files included under the Super8_jitcore/edu repo, including brief descriptions

for each. All files are contained in the Super8_jitcore/ folder

File Description

Headers/Globals.h
Source/Globals.cpp

Global header that contains debugging
toggles used to increase logging frequency.
Also contains the USE_SDL define which
specifies if graphics output using the SDL
library is to be used. Source file is not of
importance.

Headers/SDLGlobals.h
Source/SDLGlobals.cpp

Contains SDL global variables used
throughout the emulator. If the USE_SDL
flag is defined (in Globals.h), the
SDL_gfxmem and SDL_pitch is used when
drawing Chip8 sprites (used by the
Interpreter class), and will update the
SDL window created.

Headers/Super8.h
Source/Super8.cpp

Header file is empty, not used for anything.
Source file contains the main program loop,
including updating the graphics output. Can
be thought of as a while(1) loop that
executes the emulationLoop() function
of the MainEngine class.

Headers/Chip8Engine/CacheHandler.h
Source/Chip8Engine/CacheHandler.cpp

Header and source file for the
CacheHandler class. The cache handler is
responsible for allocating and managing
cache memory, and the setup CDECL cache.
CacheHandler coordinates with the
JumpHandler class to invalidate
caches/jumps.

Headers/Chip8Engine/CodeEmitter_x86.h
Source/Chip8Engine/CodeEmitter_x86.cpp
Source/Chip8Engine/CodeEmitter_x86_ADD.cpp
Source/Chip8Engine/CodeEmitter_x86_Bitwise.cpp
Source/Chip8Engine/CodeEmitter_x86_Jump.cpp
Source/Chip8Engine/CodeEmitter_x86_MOV.cpp
Source/Chip8Engine/CodeEmitter_x86_SUB.cpp

Header and source files for the
CodeEmitter_x86 class. The
CodeEmitter_x86 class is responsible for
the emitter portion of the dynamic
recompiler. It contains functions that when
used write the raw bytes into the selected
cache. Specialised opcodes (including
DYNAREC_EMIT_INTERRUPT) are
implemented in the reference source file,
while the other source files contain the
relevant specific opcodes.

Introduction to Dynamic Recompilation in Emulation Version 1.1

13

Headers/Chip8Engine/Interpreter.h
Source/Chip8Engine/Interpreter.cpp

Header and source file for the
Interpreter class, which is used for any
opcodes that are not implemented in the
translator. Only the draw opcodes are
contained in the interpreter, the others are
not needed and commented out.

Headers/Chip8Engine/JumpHandler.h
Source/Chip8Engine/JumpHandler.cpp

Header and source file for the
JumpHandler class, which implements the
jump table concept mentioned in this
document. Coordinates with the
CacheHandler to allocate new caches
when needed.

Headers/Chip8Engine/Key.h
Source/Chip8Engine/Key.cpp

Header and source file of the Key class,
which implements the keypad used with the
Chip8.

Headers/Chip8Engine/MainEngine.h
Source/Chip8Engine/MainEngine.cpp

Header and source file of the MainEngine
class, essentially the entry point for this
emulator. Implements the dynamic
recompiler structure, including the
dispatcher loop, executing caches, plus
handling interrupts. Implements part of the
translator loop, used in conjunction with the
Translator class.

Headers/Chip8Engine/StackHandler.h
Source/Chip8Engine/StackHandler.cpp

Header and source file of the
StackHandler class, used whenever stack
jumps are encountered.

Headers/Chip8Engine/Timers.h
Source/Chip8Engine/Timers.cpp

Header and source file of the Timers class,
used to implement the Chip8’s sound and
delay timer. In the edu branch, it does NOT
count down at 60Hz, and instead counts
down once per translated instruction (see
the Translater class source code).

Headers/Chip8Engine/Translator.h
Source/Chip8Engine/Translator.cpp

Header and source file of the Translator
class, which implements part of the
translator loop. The translator loop is
designed to translate code for a block of
Chip8 code, which generally means until a
jump occurs.

Headers/Chip8Globals/C8_STATE.h
Source/Chip8Globals/C8_STATE.cpp

Contains the Chip8 hardware
implementation, such as the CPU registers,
memory among other things. Used with
both the recompiled code as well as the
Translator class.

Introduction to Dynamic Recompilation in Emulation Version 1.1

14

Headers/Chip8Globals/MainEngineGlobals.h
Source/Chip8Globals/MainEngineGlobals.cpp

Contains global variables used between
components. The draw variable is also set
whenever a draw has been done and the
SDL window needs to be updated.

Headers/Chip8Globals/TranslatorGlobals.h
Source/Chip8Globals/TranslatorGlobals.cpp

Contains a global variable used between the
Translator class and translator loop
function in the MainEngine class.

Headers/Chip8Globals/X86_STATE.h
Source/Chip8Globals/X86_STATE.cpp

Contains global variables related to the x86
execution state of the emulator (ie: when
the translated caches are run). Includes the
resume emulation address and parameters
used when an interrupt is raised.

Headers/Logger/*
Source/Logger/*

External component (not relevant to
emulator).

Introduction to Dynamic Recompilation in Emulation Version 1.1

15

1. Introduction
The dynamic recompilation method means to re-compile during runtime the target program machine

code into the client machine code. When compared to the more basic interpretation method, they

both share the principle of having to grab an opcode, decode it and perform the function. The key

difference between the two however is that dynamic recompilation keeps the translated code in

memory regions known as caches, which are recalled on an on-demand basis, whereas interpreters

may perform the same opcode over and over, having to translate the opcode each time.

Dynamic recompilation is used vastly in emulation, mostly for its end benefits. Compared to the basic

interpretive emulation it offers very large improvements but also introduces problems which are more

difficult to tackle. Benefits of a dynamic recompiler include:

 Magnitudes faster than a basic interpreter (speed or power saving benefits):
There is no need to translate every opcode on every cycle, as the result has already been
cached before. This means the emulator can just point to the cache and run the code, which
means a large speed increase.

That’s it! There is really no other reason why you should use a dynamic recompiler over an interpreter.

If you do not need the speed increase, you are just wasting your time (unless you want a challenge),

as it introduces an incredible amount of complexity to the emulator, such as:

 Much harder to debug:
Often you will not know where a problem is even if your code looks ok. It could be as simple
as using the wrong emitter function bit-ness (ie: using 8-bit instead of 16-bit), or a problem
that only arises once compiler optimisations are turned on. Usually there is also a much larger
code base you will need to maintain, which has a higher chance to be bug-prone.

 Problems relating to jump locations:
It is usual for architectures to employ jump instructions for program flow control. This creates
a problem on a client architecture such as the x86 where instructions can be anywhere in
length up to 16 bytes, meaning you do not know where you should jump to.

 Problems with timings/synchronisation between components:
In a simple system such as the Chip8, there is not much of a problem here. When you start to
look at a complex system however, such as one with a GPU, SPU, etc you will quickly run into
problems trying to synchronise data or with a system that relies on accurate timings.

This document attempts to give you understanding of how a basic dynamic recompiler look like in

terms of explanations, diagrams and source code, and provides solutions to the problems above and

more.

Introduction to Dynamic Recompilation in Emulation Version 1.1

16

2. Core Concepts
This section provides the foundation ideas upon which a dynamic recompiler is built upon within

emulation. All of these concepts will be used with building an emulator, so make sure you understand

them before moving on.

2.1. Caches
Caches are at the heart of a dynamic recompiler, where they are used to read, write and execute

translated code. Without these caches, the dynamic recompiler will not work – no exceptions. While

some emulators implement caches differently, the core idea is the always the same and that is to hold

the translated code within a memory block so it can be read again for execution.

The client (x86) emitter class is usually going to be the only class that will directly write to a cache

(Section 2.2) and the code will be read from the main program via a call to the entry point.

More often than not, a cache will hold translated code until a branch is hit (ie: a jump in code). This is

done in order to solve a specific problem, which is discussed in Section 4.

In my emulator, I allow any number of caches to be created, in order to hold the translated Chip8

code. While this might sound like a bad practice, the size of Chip8 memory is only 0xFFF (4095 bytes)

in size, so not much memory is taken up by the total number of caches. Again your implementation

can dictate the parameters and structure – read up on some of the other emulators for examples.

2.2. Emitter
The emitter class is a helper class that is used to construct client assembly instructions through the

use of functions. When translating code, it would be very tedious if every time you manually

committed bytes to a cache to represent instructions. Instead, the emitter class is used to do the hard

work for you.

For example, a common assembly instruction is the MOV instruction, but it can take 2 parameters of

which they can be specific combinations of intermediates, memory address or registers. The emitter

class would contain functions to emit bytes based on all of these specific combinations.

While from a technical point of view, it would be possible to not include this class, it would not be

wise to make a dynamic recompiler without one – I can’t emphasise this enough! I have included it as

a critical part of the program as it is just too hard to make an emulator without this class (at least for

me).

2.3. Translator
The translator class & functions takes on the role of converting target opcodes into client opcodes (or

instructions). This is largely similar to an interpreter cycle, but the key difference here is instead of

immediately performing the action, it uses the emitter class to store the instructions to be executed

later in a specified cache.

2.4. Relationship Between Caches, Emitter and Translator
I came across a webpage which further explores the relationship between these 3 components – the

caches, emitter and translator. It also contains a basic structure diagram which I found helpful while

learning about it. See here (from Section iii):

http://www.multigesture.net/wp-content/uploads/mirror/zenogais/Dynamic%20Recompiler.html

http://www.multigesture.net/wp-content/uploads/mirror/zenogais/Dynamic%20Recompiler.html

Introduction to Dynamic Recompilation in Emulation Version 1.1

17

At first I didn’t really understand it, but as I researched and developed more code I began to see

what the author was trying to say.

In essence, this is what the structure looks like, adapted from the diagram given from that webpage

(thanks to the author zenogais!):

Figure 1: Relationship between the translator, emitter and caches

Note: this is a least critical (top) to most critical (bottom) diagram, whereas zenogais describes his

diagram as bottom to top. They represent the same thing. Without caches however, the most critical

part of the program is missing. This is what zenogais was trying to achieve with their diagram (order

of importance).

This diagram essentially demonstrates the relationship and order of use between the 3 components,

in a simplified manner. If any of these 3 components are not present in the program, it will not work

– it’s as simple as that!

How these components are implemented is briefly discussed in Section 5.2.1. See the source code for

the full implementation.

2.5. Dispatcher Loop
The meaning of the dispatcher loop (main program loop) here is twofold:

1. Interface to the underlying operating system, which is used to update user interaction
elements (graphics, sound, input, etc).

2. Initiate execution of the caches, and act as a handler for the interrupts generated.

This loop is abstracted over the top of all components in the emulator, tying everything together. It

also essentially acts as the entry point into the emulator.

Most of the code shown in this document for the dispatcher loop will only be for point 2 –

implementing the user interaction code will be up to you (I suggest looking at SDL if you are interested,

or the master branch of my repo).

Translator •Decodes target
(Chip8) opcodes.

Emitter
•Helper class to generate client
(x86) assembly
opcodes/instructions.

Caches
•Contains the emitted
target code, ready to be
executed.

Introduction to Dynamic Recompilation in Emulation Version 1.1

18

2.6. Interrupts
In the realm of computer science, interrupts are a signal that is generated that is used to get the

immediate attention of a component, which can then be serviced. In this case, the component is the

dispatcher loop. Interrupts are useful within dynamic recompilation as it provides a way to service

runtime problems before executing code – such as jumps mentioned in the introduction.

Within my emulator, an interrupt will be raised inside a translated code cache, which will cause the

program to transfer control outside to the dispatcher loop. The interrupt is then serviced by the

appropriate handler, and transfers control back to the translated code. The following is an example of

what an interrupt will cause:

Figure 2: Visual representation of the interrupt handling process.

More information will be provided throughout the document where the dynamic recompiler structure

and various interrupts will be discussed. Only the most used interrupt codes will be explained,

detailing what they are used for and a summarised version of how they work. Once you are familiar

with how these work, the others will make sense by reading the source code and comments.

From a technical point of view, while these interrupts could be serviced inside the translated code

directly, it is much easier to handle them inside the dispatcher loop using C++. This causes a little bit

of overhead to be introduced but it is not a problem for this emulator. Take a look at the

DYNAREC_EMIT_INTERRUPT function later on inside the CodeEmitter_x86 class to see how

interrupts are generated within caches.

Dispatcher Loop

Start

Run Caches

Handle

Interrupt

Finish

(etc)

Caches

< 0x0000A01A

Previous x86

code

0x0000A030

PREPARE_FOR_JUMP

Interrupt Raised!

PREPARE_FOR_JUMP Handler

(Do some operation.)

Introduction to Dynamic Recompilation in Emulation Version 1.1

19

2.7. Jump Table
A jump table within an emulation context is a mapping between two memory addresses (between

target and client memory), which are used to lookup where a jump should go when performed on the

client architecture. In general, whenever a jump is encountered it will reference an entry in the jump

table within the emitted translated code. Visually, the table will look something like this:

Figure 3: Jump table visual representation, mapping Chip8 addresses to x86 addresses.

Jump Table
Map

Entry 1

Chip8 Address:

0x232

x86 Address:

0x0000B0000

Map

Entry 2

Chip8 Address:

0x256

x86 Address:

0x0000D0000

(more)

Introduction to Dynamic Recompilation in Emulation Version 1.1

20

3. Dynamic Recompiler – Main Structure

3.1. Interpreter Structure Review
Before introducing the dynamic recompiler structure, I wanted to recap what is involved in the

interpreter emulation structure, to help draw better comparisons between the two. For those that

have built an interpreter, this structure will be immediately familiar. This style of emulation attempts

to replicate at a software level exactly how the machine would work. This diagram is shown with a

Chip8 context, but most of the elements are similar. If you are stuck on any element of this diagram,

please go and review an emulator which uses the interpreter method.

Figure 4: Interpreter structure overview.

1. Fetch
opcode at
current PC

2. Decode
opcode

3. Perform
opcode (ie:
add, draw

etc)

4. Increment
PC by 2 or

jump to
location

5. Handle OS
interface

(input,
graphics, etc)

Introduction to Dynamic Recompilation in Emulation Version 1.1

21

3.2. Dynamic Recompiler Structure Overview
The dynamic recompiler structure deviates from the interpreter structure, where it shifts the

translator loop (which is basically the diagram above) away from being the main loop. Instead, the

main loop, alternatively called the dispatcher loop, looks conceptually like this:

Figure 5: Dynamic recompiler structure overview.

At the core that’s all there is to it… so you’re probably wondering where all the complexity comes

from, and the answer lies in handling interrupts (which includes translating code). With the interpreter

structure in the section above, the emulator is basically complete with only that diagram. With the

dynamic recompiler structure however, the interrupt flow block needs its whole sub-diagram, which

is explained further on throughout. For now, only part 1 is discussed below, as we first need to explain

where some interrupts come from in Section 4.

This setup can be found in the source code through the MainEngine::emulationLoop() function

(for 1 and 2), as well as the main() function (for 3 and the whole loop).

Note that this setup is probably not the best way to implement a dynamic recompiler emulator – it

wouldn’t be a very good emulator for example if the input was only updated after a block of code was

executed! For demonstration purposes this works well and is used.

3.3. Running Native Code
Looking at part 1 of the dynamic recompiler structure, running native code until an interrupt is raised,

this is where we run the translated code from the target architecture into the client architecture – ie:

running x86 code in place of Chip8 code.

In order to start the execution of translated code, we must know where to start executing from.

Initially, this will be at the start of the cache that contains 0x200 as the start C8 PC – this is the normal

entry point for a Chip8 program. Eventually however, we will also need to handle interrupts, which

requires resuming emulation from a different x86 memory address (within a cache), such as when a

jump happens. This is where a global pointer x86_resume_address is introduced – this pointer

1. Run native
code (until
interrupt)

2. Handle
Interrupt

3. Handle OS
interface
(input,

graphics, etc)

Introduction to Dynamic Recompilation in Emulation Version 1.1

22

variable stores the address at which emulation will resume. It is located within the

Chip8Globals::X86_STATE scope.

Whenever an interrupt is generated through DYNAREC_EMIT_INTERRUPT (located in the

CodeEmitter_x86 class) or otherwise, there is x86 assembly code that stores the current x86 EIP

address in this variable, before transferring control back to the dispatcher loop (special case for the

OUT_OF_CODE interrupt, explained later). This makes sure that upon the dispatcher loop finishing up

handling interrupts, it will resume emulation at the point at which it was previously stopped. With this

in place, we are now able to start and stop emulation at any time.

There is one other piece to running the native code – the CDECL calling convention. Initially my

attempts to create an emulator relied on function pointers to start executing native code. When a

function call is made under Windows/Visual Studio compiler, by default it uses the CDECL calling

convention to call a function. I have stuck with this convention even though it is sufficient just to use

a simple JMP instruction (as the stack is not modified during execution).

In order to support this method of function calling, a small cache called the “setup CDECL cache” is

created at runtime which handles the stack frame creation, jump to the emulation resume point

(x86_resume_address) and stack frame destruction. Consult the execCache_CDECL() and

setupCache_CDECL() functions within the CacheHandler class for more information. Visually, this

whole process of executing the caches is displayed below.

Figure 6: Diagram of cache execution using the CDECL calling convention.

MainEngine::emulationLoop()

Setup CDECL Cache

Create new

stack frame

JMP to
x86_resume_address

Call to CacheHandler::execCache_CDECL()
Code Caches
(recompiled code)

0x00A00000 to 0x00A00090

Draw subroutine

0x00A00090 +

Interrupt raised!
x86 EIP register value saved in
x86_resume_address

Clean-up created stack

frame

JMP back to CDECL cache return

point Continue on emulationLoop() function.

(Handle interrupt and OS interface etc)

Introduction to Dynamic Recompilation in Emulation Version 1.1

23

There is one other part of the CDECL cache I should explain from the source code, and that is about

the EIP value ‘hack’. The x86-32 instruction set contains no opcode to directly read the EIP register.

Normally this would be possible with mostly any other register through the MOD-REG-R/M byte and

a move instruction, however the bit sequence for the EIP register simply does not exist. To get around

this (as we need the EIP address to resume emulation), a call is made to the

CacheHandler::setup_cache_eip_hack address from a parent function, which stores the EIP

address on top of the stack. This is then pop’d off the stack into the EAX register (and of course push’d

again), which is kept across the return opcode. The parent function that called the hack method can

then use the EIP value that is kept within the EAX register.

Introduction to Dynamic Recompilation in Emulation Version 1.1

24

4. Implementation Issues & Details
Before diving into interrupt details for a dynamic recompiler, we will need to discuss the technical

problems associated with this method. For a system such as the Chip8, there are not many issues

around dynamic recompilation. In fact, most of the problems listed will be common to all emulators,

not just the Chip8 system. After we have discussed these problems, we will be ready to put the

emulator together.

4.1. Jumps

4.1.1. Jumps Problem
With the interpreter approach, handling jumps was easy. We would just point the Chip8 PC to the

jump location and re-run the whole emulation loop. This method works because we do not care where

the jump points to – we will always know the address it points to and be able to run code from that

point. It is important to note that this is always done in the target (Chip8) context. Here is an

illustration of this in the Chip8 context:

Figure 7: Chip8 example of jumps.

With dynamic recompilation, we are now working within the client (x86) context. All of a sudden, we

may encounter a translated instruction where we have to jump back into code that we have already

translated. This creates a problem, as on an architecture such as the x86, where opcodes vary in

length, and we do not know where the jump should go to as the future opcode has not been translated

yet. Here is an illustration of this problem in the x86 context (remember we are working in 32-bit

addressing mode, and no longer within the Chip8 context):

Figure 8: Non-working x86 representation of Chip8 jumps, highlighting problems.

0x0200 - 10
Start of draw
subroutine.

0x0210
Increment V0

by 4(h).

0x0212
Check if V0 is equal
to 40(h). Skip next
instruction if true.

0x0214
Jump to
0x0200.

0x0216
(more of

program).

0x00CD0000 - 60
Start of draw
subroutine.

0x00CD0060
Increment
V0 by 4(h).

0x00CD0064
Check if V0 is

equal to 40(h).
Skip next

instruction if
true.

0x00CD006D
Jump to
0x0200.

0x00CD00??
(more of

program).

But where is 0x0200?

But where is the end of

the next instruction?

Introduction to Dynamic Recompilation in Emulation Version 1.1

25

Clearly there is a big problem here – if we do not know where to jump to, then our recompiled program

will not work at all if it contains jumps!

Now is a good time to introduce the types of jumps we will encounter in a Chip8 context. Not all of

them are the same, and we will have to handle them in different ways.

Direct Jumps

From my own experience, these are probably the most widely used jump type in a Chip8 context,

besides conditional jumps. The only Chip8 opcode that falls under this type of jump is 1NNN, where it

points the PC to the address 0xNNN.

Indirect Jumps

This type of jump is almost never used in a Chip8 context. In spite of this, it is important to recognise

that these types of jumps can only be determined during runtime - ie: you can’t determine where the

jump will go to until you reach this instruction in the program. This is because indirect jumps depend

on the state of the CPU while calculating where to jump to. There is only one opcode of this type in

the Chip8 context, and that is BNNN, where it jumps to address 0xNNN + V0 – as you can see it

depends on the value within the V0 register before it can determine the jump location.

Stack Jumps

Often used to handle sub-routine calls, stack jumps are where it puts the return location onto the

stack and jumps to another address (that is known pre-runtime – like a direct jump). Once done with

the subroutine, a return call is made which jumps back to the address at the top of the stack (but can’t

be determined pre-runtime). Within the Chip8 context, two opcodes are used for stack jumps: 2NNN

and 00EE, where the first is for calling a subroutine, and the second is for returning from a subroutine.

Conditional Jumps

The other widely used jump opcode in a Chip8 context, conditional jumps are used a lot for program

logic flow. The Chip8 opcodes that fall under this category are 3XNN, 4XNN, 5XY0, 9XY0, EX9E and

EXA1 where they all skip the next instruction if the condition is met. We can use the fact that they

only skip one Chip8 instruction to develop a solution for this type of jump.

Reflecting on these types of jumps, one could actually categorise them based on two major categories:

independent (compile time) or dependant (runtime) jumps. However, we will leave them as they are,

as I have made solutions for each of the 4 categories.

4.1.2. Jumps Solution – Part 1
Direct Jumps, Indirect Jumps & Stack Jumps

In order to support these jumps in the first place, we need a way to determine which x86 address

corresponds to which Chip8 jump address.

This is where the idea of segmented (multiple) caches comes in – creating caches that contain

translated code from the beginning of a specific Chip8 address corresponding to jump locations, and

end on a Chip8 address location when a jump instruction is reached. From now on, this is what a single

cache refers to and is also known as a memory block – a continuous block of instructions that does

not branch until the last instruction in the cache.

At this point, this is an example of what the cache layout would look like if we have a rom loaded and

took a look, remembering & assuming these things:

Introduction to Dynamic Recompilation in Emulation Version 1.1

26

 Assume we have a Chip8 rom loaded, and we have translated code from Chip8 memory
locations 0x0200 – 0x0260 (but there is additional code beyond 0x0260 not shown).

 Remembering that Chip8 opcodes take up 2 bytes of space, but the translated x86 opcodes
can vary in length (and are usually more than 2 bytes long). The number of bytes the x86
opcodes take up is represented by the x86_pc variable within each cache.

 The caches have been allocated in x86 with sufficient space to hold the translated code and
starts at 0xNNNNNNNN.

 The cache start and end Chip8 PC are INCLUSIVE (ie: translated code exists in the same cache
for the boundary Chip8 PC’s and anything in-between).

 Assume that the start Chip8 PC’s are jump locations, and the end Chip8 PC’s are jump
instructions (which all contain known Chip8 jump addresses).

Figure 9: Example of a cache layout.

Ok great – we now have a basis to deal with jump locations. When a translated x86 jump instruction

is reached, we can simply jump to the corresponding start x86 address of a matching cache which has

the same start Chip8 address.

In order to support self-modifying code, the jump table concept mentioned earlier is implemented in

the emulator. In terms of the cache instructions when a jump is performed, it is necessary to first

perform a PREPARE_FOR_JUMP (or similar) interrupt, and then make use of the JMP PTR32

instruction. The PREPARE_FOR_JUMP interrupt makes sure that there is a valid cache to jump to

(explained in more detail in Section 5.2), and the JMP PTR32 opcode is used instead of a standard

JMP IMM32 so it can jump to the address contained in the jump table, allowing for different jump

locations.

4.1.3. Jumps Solution – Part 2
Conditional Jumps

Conditional jumps are somewhat different than the other types of jumps, where in the context of the

Chip8 system, it will always skip the next instruction if the conditions are met – ie: we know the relative

jump distance is forward 1 Chip8 instruction.

This means that if a conditional jump is encountered in the translator loop, we can do the following:

1. Emit the x86 JMP REL32 instruction as per normal, but do not fill in the relative value.

Cache 1 @ 0x007B0000:

x86_pc = 0x4C

Start C8 PC = 0x0200

End C8 PC = 0x0210

Cache 2 @ 0x007C0000:

x86_pc = 0x20

Start C8 PC = 0x0212

End C8 PC = 0x0216

Cache 3 @ 0x007D0000:

x86_pc = 0x52

Start C8 PC = 0x0218

End C8 PC = 0x0230

Cache 4 @ 0x007E0000:

x86_pc = 0x2A

Start C8 PC = 0x0232

End C8 PC = 0x0250

Cache 5 @ 0x007F0000:

x86_pc = 0x1F

Start C8 PC = 0x0252

End C8 PC = 0x0260

Introduction to Dynamic Recompilation in Emulation Version 1.1

27

2. Record the cache address minus 4 for the relative jump value address. This is assuming we are
using a 32-bit x86 relative jump instruction such as JE 0x00000000, where 4 bytes are used
for holding the relative jump value.

3. Keep running the translator.
4. When one translator cycle has passed, we can go back to the relative jump instruction and fill

in the relative value with the current cache address minus the cache address recorded above.
This will complete the relative jump instruction and make it valid.

4.2. Cache Code Generation

4.2.1. Cache Code Generation Problem
As it is not possible to generate the x86 code all at once from the Chip8, a decision needs to be made

in regards to when the x86 code should be generated.

4.2.2. Cache Code Generation Solution
The solution implemented is to generate the code when a PREPARE_FOR_JUMP interrupt is handled.

As one of the interrupt parameters is the Chip8 jump location, we are able to grab the details of the

corresponding jump table cache, and check if the cache x86_pc is equal to 0 to determine if code is

to be generated. In other words, this is done on an on demand basis and not all caches will have code

generated at the same time.

This is also implemented in the PREPARE_FOR_STACK_JUMP and PREPARE_FOR_INDIRECT_JUMP

interrupt handlers, with mostly the same method.

Once the correct cache has been selected and switched to in the CacheHandler, the translator loop

is run up until the next jump (hence translating a complete block of code).

4.3. Inter-cache Jumps

4.3.1. Inter-cache Jumps Problem
Hopefully you’ll remember that caches should always end on a normal x86 jump instruction from the

general jumps problem. A problem that arises from the conditional jump solution mentioned above is

that often there are loop constructs that look like the figure below, where even though the cache does

end on a jump, there is no translated code to execute if the conditional jump is true.

Figure 10: Example of the inter-cache-jump problem which stems from conditional jumps.

As you can see, the conditional jump instruction will have nowhere to go if true, even though the code

is valid. This is because a different cache will contain the code that goes after the end instruction,

which was created due to the ‘end on jump’ cache rule mentioned in Section 4.1.2.

0x00CD0000 - 64
Start of draw
subroutine.

0x00CD0064
Check if X ==
Y. Skip next

instruction if
true.

0x00CD006D
Absolute jump

to
0x00CD0000.

0x00CD0073 +
Does not

exist!

EIP register
overflows into
other memory

(crash)

Introduction to Dynamic Recompilation in Emulation Version 1.1

28

4.3.2. Inter-cache Jumps Solution
To solve this, we need to emit a jump to another cache, which will contain the code after the cache

end jump instruction. We will know when to do this when an OUT_OF_CODE interrupt is raised, which

is placed at the very end of the cache at creation (as a guard). The rest of the cache is filled with NOP’s

at creation, which means any unused space will simply do nothing while reaching the interrupt.

Figure 11: Diagram of the inter-cache jump solution with the guard at the end of the cache.

The method of jumping is the same method used in the general jumps problem above – that is to use

the jump table and emit a JMP PTR32 x86 instruction. The emulation resume address is also set to

the last address in the cache where code was emitted, so the jump can happen.

See Section 5.4 for more information on the OUT_OF_CODE interrupt.

0x00CD0000+
Start of draw
subroutine.

0x00CD0064
Check if VX ==
VY. Skip next
instruction if

true.

0x00CD006D
Absolute jump

to
0x00CD0000.

0x00CD0073 +
NOP (0x90)

0x00CD0FE9

OUT_OF_CODE
interrupt raised.

Introduction to Dynamic Recompilation in Emulation Version 1.1

29

5. Handling Interrupts
This section will go over the different interrupts that will be encountered while running the emulator.

Not all of the interrupts will be covered, only the essential ones. Once you learn how some of the

major interrupts work you should be ok with decoding the other minor interrupts not covered.

The major interrupts that are commonly used throughout Chip8 emulation are:

1. PREPARE_FOR_JUMP
2. USE_INTERPRETER
3. OUT_OF_CODE

5.1. Common Details
All of the interrupts involved have access to 3 parameters, which are used to parse information when

the interrupt gets handled later on. Of these 3 parameters, currently two 16-bit parameters are used

to hold Chip8 addresses (ie: 0x210) or opcodes and one is used to hold an x86 32-bit address (ie:

0x00BA0000). Usually at least one of the parameters are used for holding information by an interrupt.

5.2. Interrupt Details: PREPARE_FOR_JUMP
The PREPARE_FOR_JUMP interrupt is used to determine where a jump should go to before performing

the jump. Within the translated code cache that this interrupt is in, an emitted JMP PTR32 x86

instruction will be performed through the jump table after this interrupt is serviced.

One may think that it is ok to use a static JMP IMM32 instruction. However, there is one major problem

with this, and that is that self modifying code would not be supported. In terms of Chip8 opcodes, this

means anything that writes back to memory, such as the FX33 and FX55 opcodes, would be affected.

Every time these opcodes are executed, the caches representing the written memory are no longer

valid and do not represent the current memory of the Chip8 system. When a cache is marked invalid

(through the SELF_MODIFYING_CODE interrupt), it is scheduled for deletion as soon as possible.

To resolve this, a jump table is created, which involves holding all of the Chip8 jump locations in a

table, individually mapped to a x86 address value that can be dynamically updated in the

PREPARE_FOR_JUMP interrupt. When a JMP PTR32 instruction is emitted, it points to the x86 address

variable in the jump table which contains the correct jump location.

Introduction to Dynamic Recompilation in Emulation Version 1.1

30

Figure 12: Diagram to show how jumps interact with the jump table and between caches.

If a cache has previously been deleted, the PREPARE_FOR_JUMP interrupt makes sure there is a cache

to jump to by creating one and updating the jump table entry.

As mentioned before, there is one other purpose of the PREPARE_FOR_JUMP interrupt, and that is to

initiate the translator loop on caches that contain no code. One of the parameters parsed to the

interrupt handler is the Chip8 jump location. The handler checks the corresponding cache in the jump

table through this parameter, to see if any code has been emitted before by checking the x86_pc

cache variable. If no code exists, the translator loop will initiate and translate a block of code.

5.2.1. Translator Loop
The translator loop is responsible for translating the target opcodes (Chip8) into the client opcodes

(x86). This is similar to how the interpreter emulator works, where it replicates how the Chip8 CPU

works. However instead of executing the opcode, it merely stores the translated equivalent in a cache

for later execution.

The translator loop is designed to run for a block of code, meaning until a jump is reached (normal

jump, stack jump or indirect jump).

5.3. Interrupt Details: USE_INTERPRETER
Some opcodes within the Chip8 specifications are complex to translate directly into x86 emitted

assembly, such as the DXY0 opcode (draw sprite). For these opcodes, the implementation from the

interpreter approach is reused (ie: using C++ code), and the dynamic recompiler approach can be

developed later.

Cache 1

S: 0x210

E: 0x230

0x0000A000

Start of subroutine

0x0000A090

End of subroutine

PREPARE_FOR_JUMP

Interrupt

0x0000A094

Jump to next cache

(0x232)

JMP PTR32

Jump Table
Map

Entry 1

Jump to Chip8 PC:

0x232

Cache x86 Address

containing 0x232

start Chip8 PC:

0x0000B0000

Cache 2

S: 0x232

E: 0x250

0x0000B000

Start of subroutine

0x0000B000 +

(more code)

Introduction to Dynamic Recompilation in Emulation Version 1.1

31

This approach only works if the Chip8 CPU state is synced beforehand, meaning that all of the registers

and memory have to be updated before the interpreter can be used. In terms of emulation, this means

running the translated code up until the interpreted opcode.

In order for the program control to fall back to the interpreter, an interrupt is emitted at the opcode

position in the cache with the USE_INTERPRETER code (and the Chip8 opcode as the parameter).

This signals the dispatcher loop to use the interpreter to handle the opcode.

Figure 13: Flow diagram of the interpreter fall-back process.

Once the interpreter has run, it returns control back to the dispatcher loop in which eventually it will

resume normal emulation.

5.4. Interrupt Details: OUT_OF_CODE
The OUT_OF_CODE interrupt is used to link caches together, by emitting a jump through the jump

table to the next adjacent Chip8 memory location. This interrupt gets triggered whenever there is no

more code to be executed, as a way to prevent the x86 EIP register from going out of the allocated

memory region.

So far, this can only happen whenever a conditional jump is true, and it skips over the end jump within

the cache. In this case, the next adjacent cache will contain the code to execute after the conditional

jump. In order to reach this next cache, this interrupt handler will emit both a PREPARE_FOR_JUMP

interrupt, and a JMP PTR32 instruction through the jump table, eventually jumping to the cache end

Chip8 PC plus 2 bytes.

Dispatcher Loop

Start

Run Caches

Handle

Interrupt

Finish

(etc)

Caches

< 0x0000A000

Previous x86

code

0x0000A030

DXY0 opcode

(USE_INTERPRETER)

Interpreter Handler

Decode

opcode given

Perform DXY0

(draw opcode)

Introduction to Dynamic Recompilation in Emulation Version 1.1

32

Figure 14: End result of the OUT_OF_CODE interrupt which adds on the extra jump at the end.

The only parameter parsed to this interrupt is the cache base address, which is known at the time

when the interrupt is inserted into the end of the cache. Using this parameter, the handler is able to

find which cache that corresponds to, and get the end Chip8 PC.

5.4.1. Differences from Other Interrupts
Earlier on in this document, I mentioned that the OUT_OF_CODE interrupt is not generated through

the emitter, but is created at the end of a new cache as a way to protect the x86 instruction pointer

from going out of bounds. In the case where the OUT_OF_CODE interrupt is reached, the handler is

invoked from the dispatcher loop, just like any other normal interrupt.

Special care, however, must be taken to ensure that the x86_resume_emulation variable is reset

to just after the last emitted instruction in the cache, before emulation is resumed. As this interrupt

is raised at the end of the cache and not when it starts to run out of code, it is not possible to set the

variable within the interrupt code. Luckily, it is easy to figure out where the x86_resume_emulation

should point to, and this is the cache base address plus the x86_pc cache variable.

Note that in order to place this interrupt at the end when the cache is created, a cache size must be

known. I have set this to be 4 KB of memory per cache, which is more than enough for any Chip8 rom.

0x00CD0000 +
Cache Code

(0x210 ->
0x220)

0x00CD0080
Conditional
Jump, skip

next
instruction

0x00CD0090

Jump to
0x210 (inc.
interrupt)

0x00CD0095
PREPARE_FO

R_JUMP

0x00CD0095 +
JMP PTR32 to

0x222

Introduction to Dynamic Recompilation in Emulation Version 1.1

33

6. Current Issues

6.1. Self Modifying Code
Currently self modifying code is handled by marking the caches that represent the memory written as

invalid, meaning it should be deleted as soon as possible. However, currently this deletion only

happens after two things:

1. There is a PREPARE_FOR_JUMP type of interrupt being serviced.
2. The x86_resume_address is not currently pointing to the marked cache.

An issue arises from this implementation, whereby if the memory written is actually in the same cache,

and after the SELF_MODIFYING_CODE interrupt code in the cache, then the new code will never get

a chance to run until the cache is deleted and recreated again.

So far I have not encountered a rom which requires the proper handling of this, so it may not actually

be a problem and instead more of a general accuracy problem. I have not bothered to investigate a

way to solve this, but a pull request is welcome!

Introduction to Dynamic Recompilation in Emulation Version 1.1

34

7. Conclusion
After reading this document and looking at the accompanying source code, you should now have a

grasp of how to make a dynamic recompiling emulator. There is a lot of work involved, and I’m sure

some of you reading this may have better ways to do things. I created this emulator by myself as a

way to learn about this area of emulation, so there are bound to be some areas for improvement.

Some of the significant concepts used in my implementation include the use of a dispatcher loop,

interrupts, a jump table, and most importantly the core caches, emitter and translator. Without any

one of these elements, the emulator will not work. Hopefully I have provided an adequate explanation

of them.

If anyone reading this is still stuck, or you have some (constructive!) comments you may contact me

through my email address listed at the beginning, or through various forums. Remember to consult

Section vii for details about the files.

Good Luck!

