Removed NioTSO client and server

- NioTSO client isn't needed because we're using RayLib
- Added FreeSO's API server to handle most backend operations
This commit is contained in:
Tony Bark 2024-05-01 02:55:43 -04:00
parent f12ba1502b
commit 22191ce648
591 changed files with 53264 additions and 3362 deletions

View file

@ -0,0 +1,253 @@
using FSO.SimAntics.Model.Routing;
using Microsoft.Xna.Framework;
using System.Collections.Generic;
using System.Linq;
namespace FSO.Common.WorldGeometry
{
/// <summary>
/// Projects one mesh onto another mesh on a given axis, potentially with an offset from the surface.
/// Example use case: Projecting a road onto a terrain mesh
/// </summary>
public class MeshProjector
{
public MeshProjector(IEnumerable<BaseMeshTriangle> baseMesh, IEnumerable<MeshTriangle> projMesh)
{
foreach (var tri in baseMesh) tri.GenBounds();
foreach (var tri in projMesh) tri.GenBounds();
BaseMesh = baseMesh;
ProjectMesh = projMesh;
BaseSet = BaseTriangleSet.RoughBalanced(baseMesh.ToList());
}
IEnumerable<BaseMeshTriangle> BaseMesh;
BaseTriangleSet BaseSet;
IEnumerable<MeshTriangle> ProjectMesh;
public List<int> Indices;
public List<MeshPoint> Vertices;
public void Project()
{
Indices = new List<int>();
Vertices = new List<MeshPoint>();
//find list of potential intersect tris for a projtri
//build clipping edges for projtri
foreach (var projTri in ProjectMesh)
{
//find candidate baseTris
var candidates = BaseSet.AllIntersect(projTri);
foreach (var baseTri in candidates)
{
//if (projTri.RoughIntersects(baseTri))
//{
ClipTriangles(baseTri, projTri, Vertices, Indices);
//}
}
}
}
private void ClipTriangles(BaseMeshTriangle baseTri, MeshTriangle projTri, List<MeshPoint> outverts, List<int> inds)
{
//SutherlandHodgman algorithm
//clip a triangle against another by iteratively clipping each edge of the second one
//we want to clip against base tri
var outputList = new MeshPolygon(projTri);
var basePlane = new Plane(baseTri.Vertices[0], baseTri.Vertices[1], baseTri.Vertices[2]);
for (int i=0; i<3; i++)
{
if (outputList.Points.Count == 0) return;
var inputList = outputList;
var edge = new ClipEdge(baseTri.Vertices[i], baseTri.Vertices[(i + 1) % 3]);
outputList = new MeshPolygon();
var lastPoint = inputList.Points.Last();
int j = inputList.Points.Count-1;
foreach (var point in inputList.Points)
{
if (!edge.ShouldClip(point.Position))
{
if (edge.ShouldClip(lastPoint.Position))
{
outputList.Points.Add(edge.IntersectLine(inputList, j));
}
//we still need to project the point onto the surface...
var ray = new Ray(point.Position, new Vector3(0, -1, 0));
var intersect2 = ray.Intersects(basePlane);
if (intersect2 == null) {
ray.Direction *= -1;
intersect2 = ray.Intersects(basePlane);
if (intersect2 == null) { }
intersect2 = -(intersect2 ?? 0f);
}
point.Position.Y -= intersect2.Value;
outputList.Points.Add(point);
} else
{
if (!edge.ShouldClip(lastPoint.Position))
{
outputList.Points.Add(edge.IntersectLine(inputList, j));
}
}
j = (j + 1) % inputList.Points.Count;
lastPoint = point;
}
}
if (outputList.Points.Count < 3) return; //?
outputList.Triangulate(outverts, inds);
}
}
public class ClipEdge
{
Vector3 EdgeVec;
Vector2 DotVec;
Vector3 EdgePos;
Vector2 EdgePos2;
public ClipEdge(Vector3 from, Vector3 to)
{
//xz
//we assume the triangle is winding clockwise, so points on the left should be clipped
EdgeVec = to - from;
EdgePos = from;
EdgePos2 = new Vector2(from.X, from.Z);
DotVec = new Vector2(-EdgeVec.Z, EdgeVec.X);
}
public bool ShouldClip(Vector3 pos)
{
return (Vector2.Dot(DotVec, new Vector2(pos.X, pos.Z) - EdgePos2) < 0);
}
public MeshPoint IntersectLine(MeshPolygon tri, int lineInd)
{
var points = tri.Points;
var lineInd2 = (lineInd + 1) % points.Count;
var pt1 = tri.Points[lineInd];
var pt2 = tri.Points[lineInd2];
Vector3 a = EdgeVec; //line 1
Vector3 b = pt2.Position - pt1.Position; //line 2
Vector3 c = EdgePos - pt1.Position; //vec between starts
//percent of line 1 where we intersect with line 2
float ip = 1 / (-b.X * a.Z + a.X * b.Z); //projection
float t = (b.X * c.Z - b.Z * c.X) * ip;
//percent of line 2 where we intersect line 1
float ip2 = 1 / (-a.X * b.Z + b.X * a.Z);
float s = (a.X * (-c.Z) - a.Z * (-c.X)) * ip2;
//pos + vec * t = pos2 + vec2 * s
//vec * t - vec2 * s = pos2 - pos1
float[] newTC = new float[pt1.TexCoords.Length];
float ms = 1 - s;
for (int i=0; i<newTC.Length; i++)
{
newTC[i] = pt1.TexCoords[i] * ms + pt2.TexCoords[i] * s;
}
return new MeshPoint(
//position from the clip triangle (use t)
EdgePos + EdgeVec * t,
//texcoords from the two points in the poly (use s)
newTC
);
}
}
public class BaseMeshTriangle
{
public float x1;
public float y1;
public float x2;
public float y2;
public Vector3[] Vertices;
public void GenBounds()
{
x1 = Vertices[0].X;
y1 = Vertices[0].Z;
x2 = x1;
y2 = y1;
for (int i=1; i<Vertices.Length; i++)
{
var v = Vertices[i];
if (v.X < x1) x1 = v.X;
if (v.Z < y1) y1 = v.Z;
if (v.X > x2) x2 = v.X;
if (v.Z > y2) y2 = v.Z;
}
}
public bool RoughIntersects(BaseMeshTriangle other)
{
return !(x1 > other.x2 || x2 < other.x1 || y1 > other.y2 || y2 < other.y1);
}
}
public class MeshTriangle : BaseMeshTriangle
{
public float[][] TexCoords;
}
public class MeshPoint
{
public Vector3 Position;
public float[] TexCoords;
public MeshPoint(Vector3 pos, float[] texCoords)
{
Position = pos;
TexCoords = texCoords;
}
public MeshPoint(Vector3 pos, Vector2 texCoords)
{
Position = pos;
TexCoords = new float[] { texCoords.X, texCoords.Y };
}
}
public class MeshPolygon {
public List<MeshPoint> Points;
public MeshPolygon()
{
Points = new List<MeshPoint>();
}
public MeshPolygon(MeshTriangle tri)
{
Points = new List<MeshPoint>();
for (int i=0; i<3; i++)
{
Points.Add(new MeshPoint(tri.Vertices[i], tri.TexCoords[i]));
}
}
public void Triangulate(List<MeshPoint> outverts, List<int> inds)
{
//simple fan triangle fill
var baseInd = outverts.Count;
outverts.AddRange(Points);
for (int i=2; i<Points.Count; i++)
{
inds.Add(baseInd);
inds.Add(baseInd+i-1);
inds.Add(baseInd+i);
}
}
}
}

View file

@ -0,0 +1,241 @@
using Microsoft.Xna.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
namespace FSO.Common.WorldGeometry.Paths
{
public class LinePath
{
public List<LinePathSegment> Segments = new List<LinePathSegment>();
public bool SharpStart;
public bool SharpEnd;
public int TemplateNum;
public float StartOffset;
public float Length;
public LinePath()
{
}
public LinePath(List<Vector2> line)
{
for (int i=0; i<line.Count-1; i++)
{
var seg = new LinePathSegment(line[i], line[i + 1]);
Length += seg.Length;
Segments.Add(seg);
}
}
public Tuple<Vector2, Vector2> GetPositionNormalAt(float offset)
{
foreach (var seg in Segments)
{
//is the given offset in this segment?
if (offset < seg.Length)
{
var i = offset / seg.Length;
return new Tuple<Vector2, Vector2>(Vector2.Lerp(seg.Start, seg.End, i), Vector2.Lerp(seg.StartNormal, seg.EndNormal, i));
}
offset -= seg.Length;
}
var last = Segments.Last();
return new Tuple<Vector2, Vector2>(last.End, last.EndNormal);
}
public List<LinePath> Split(float dist, float gap)
{
var result = new List<LinePath>();
var startGap = dist - gap / 2;
var endGap = dist + gap / 2;
bool before = 0 < startGap;
LinePath current = new LinePath();
if (before)
{
current.SharpStart = SharpStart;
current.SharpEnd = true;
current.StartOffset = StartOffset;
}
else
{
current.SharpStart = true;
current.SharpEnd = SharpEnd;
current.StartOffset = StartOffset + endGap;
}
current.TemplateNum = TemplateNum;
float soFar = 0;
foreach (var segment in Segments)
{
if (before)
{
if (soFar + segment.Length <= startGap)
{
//add this segment
current.Segments.Add(segment);
}
else
{
//this segment extends over the gap.
//an additional segment must be added to reach the start gap
if (soFar != startGap && segment.Length != 0)
{
var bridge = new LinePathSegment(segment.Start, Vector2.Lerp(segment.Start, segment.End, (startGap - soFar) / segment.Length));
bridge.StartNormal = segment.StartNormal;
current.Segments.Add(bridge);
}
current.Length = current.Segments.Sum(x => x.Length);
result.Add(current);
current = new LinePath();
current.SharpStart = true;
current.SharpEnd = SharpEnd;
current.StartOffset = StartOffset + endGap;
current.TemplateNum = TemplateNum;
before = false;
}
}
if (!before)
{
if (current.Segments.Count == 0)
{
//waiting to get to a segment that ends after the gap.
if (soFar + segment.Length > endGap)
{
var bridge = new LinePathSegment(Vector2.Lerp(segment.Start, segment.End, (endGap - soFar) / segment.Length), segment.End);
bridge.EndNormal = segment.EndNormal;
current.Segments.Add(bridge);
}
}
else
{
//add this segment
current.Segments.Add(segment);
}
}
soFar += segment.Length;
}
current.Length = current.Segments.Sum(x => x.Length);
result.Add(current);
return result;
}
public List<Vector3> Intersections(LinePath other)
{
var epsilon = (0.9f * 0.9f) / 0.5f;
//finds intersections between this linepath and another.
var result = new List<Vector3>();
float soFar = 0;
for (int i=0; i<Segments.Count; i++)
{
var seg1 = Segments[i];
for (int j=0; j<other.Segments.Count; j++)
{
var seg2 = other.Segments[j];
var inter = seg1.Intersect(seg2);
if (inter != null)
{
var interc = inter.Value;
interc.Z += soFar;
result.Add(interc);
}
}
soFar += seg1.Length;
}
//remove dupes
result = result.OrderBy(x => x.Z).ToList();
for (int i = 0; i < result.Count - 1; i++)
{
var first = result[i];
while (i < result.Count - 1)
{
var second = result[i + 1];
var distance = second - first;
distance.Z = 0;
if (distance.LengthSquared() < epsilon)
{
result.RemoveAt(i);
}
else;
{
break;
}
}
}
return result;
}
public void PrepareJoins()
{
LinePathSegment last = null;
foreach (var line in Segments)
{
if (last != null)
{
last.EndNormal = line.StartNormal = Vector2.Normalize(last.EndNormal + line.StartNormal);
}
last = line;
}
}
}
public class LinePathSegment
{
public Vector2 Start;
public Vector2 End;
public Vector2 Direction;
//normals are used when constucting geometry from a line. they face to the right from the line.
//to create a seamless line, we average the end normal of this line and the start normal of the last, setting both to the result.
public Vector2 StartNormal;
public Vector2 EndNormal;
public float Length;
public LinePathSegment(Vector2 start, Vector2 end)
{
Start = start;
End = end;
Direction = end - start;
Length = Direction.Length();
var dirn = Direction;
dirn.Normalize();
StartNormal = EndNormal = new Vector2(-dirn.Y, dirn.X);
}
public Vector3? Intersect(LinePathSegment other) //xy: point, z: distance along line
{
if (this.Length == 0 || other.Length == 0) return null;
var epsilon = 0.0001f;
Vector2 a = Direction;
Vector2 b = other.Direction;
Vector2 c = Start - other.Start;
//percent of line 1 where we intersect with line 2
float ip = 1 / (-b.X * a.Y + a.X * b.Y); //projection
float t = (b.X * c.Y - b.Y * c.X) * ip;
//percent of line 2 where we intersect line 1
float ip2 = 1 / (-a.X * b.Y + b.X * a.Y);
float s = (a.X * (-c.Y) - a.Y * (-c.X)) * ip2;
if (float.IsNaN(t) || t < -epsilon || t > 1 + epsilon || float.IsNaN(s) || s < -epsilon || s > 1 + epsilon)
{
return null;
}
return new Vector3(Direction * t + Start, t * Length);
}
}
}

View file

@ -0,0 +1,161 @@
using Microsoft.Xna.Framework;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Xml;
namespace FSO.Common.WorldGeometry.Paths
{
public enum SVGPathSegmentType
{
MoveTo,
LineTo,
CurveTo,
Close
}
public class SVGPathSegment
{
public SVGPathSegmentType Type;
public Vector2 Position;
public Vector2 ControlPoint1;
public Vector2 ControlPoint2;
}
public class SVGPath
{
public string ID;
public List<SVGPathSegment> Segments;
public SVGPath(string id, List<SVGPathSegment> segs)
{
ID = id;
Segments = segs;
}
}
public class SVGParser
{
public List<SVGPath> Paths;
public SVGParser(string svgText)
{
var xml = new XmlDocument();
xml.XmlResolver = null;
xml.LoadXml(svgText);
Paths = new List<SVGPath>();
var paths = xml.GetElementsByTagName("path");
foreach (XmlNode path in paths)
{
var str = path.Attributes["d"].InnerText.Replace(',', ' ');
int template = 0;
var id = path.Attributes["id"]?.InnerText;
var elems = str.Split(' ');
var pos = new Vector2(0, 0);
var newPath = new List<SVGPathSegment>();
for (int i = 0; i < elems.Length; i += 0)
{
var type = elems[i++];
if (type.Length == 0) continue;
var relative = char.IsLower(type[0]);
if (!relative) pos = new Vector2();
switch (type.ToLower())
{
case "m":
case "l":
//lineto
pos += new Vector2(float.Parse(elems[i++], CultureInfo.InvariantCulture), float.Parse(elems[i++], CultureInfo.InvariantCulture));
newPath.Add(new SVGPathSegment()
{
Position = pos,
Type = (type.ToLower() == "l") ? SVGPathSegmentType.LineTo : SVGPathSegmentType.MoveTo
});
break;
case "c":
var cp1 = new Vector2(float.Parse(elems[i++], CultureInfo.InvariantCulture), float.Parse(elems[i++], CultureInfo.InvariantCulture)) + pos;
var cp2 = new Vector2(float.Parse(elems[i++], CultureInfo.InvariantCulture), float.Parse(elems[i++], CultureInfo.InvariantCulture)) + pos;
pos += new Vector2(float.Parse(elems[i++], CultureInfo.InvariantCulture), float.Parse(elems[i++], CultureInfo.InvariantCulture));
newPath.Add(new SVGPathSegment()
{
Position = pos,
ControlPoint1 = cp1,
ControlPoint2 = cp2,
Type = SVGPathSegmentType.CurveTo
});
break;
case "z":
//close
newPath.Add(new SVGPathSegment()
{
Type = SVGPathSegmentType.Close
});
break;
}
}
Paths.Add(new SVGPath(id, newPath));
}
}
public LinePath ToLinePath(SVGPath inpath)
{
var segs = inpath.Segments;
var line = new List<Vector2>();
var closed = false;
var pos = new Vector2(0, 0);
foreach (var seg in segs)
{
switch (seg.Type)
{
case SVGPathSegmentType.MoveTo:
case SVGPathSegmentType.LineTo:
line.Add(seg.Position);
break;
case SVGPathSegmentType.CurveTo:
//subdivided curve. currently 20 subdivisions.
var subdiv = 20;
var lastPos = line.Last();
for (int i=1; i<subdiv; i++)
{
var t = i / (float)subdiv;
var s = 1 - t;
line.Add(new Vector2(
(s * s * s) * lastPos.X + 3 * (s * s * t) * seg.ControlPoint1.X + 3 * (s * t * t) * seg.ControlPoint2.X + (t * t * t) * seg.Position.X,
(s * s * s) * lastPos.Y + 3 * (s * s * t) * seg.ControlPoint1.Y + 3 * (s * t * t) * seg.ControlPoint2.Y + (t * t * t) * seg.Position.Y
));
}
break;
case SVGPathSegmentType.Close:
//finish at the start.
if (line.First() != line.Last()) line.Add(line.First());
closed = true;
break;
}
}
var path = new LinePath(line);
if (inpath.ID != null && inpath.ID.StartsWith("template"))
{
path.TemplateNum = int.Parse(inpath.ID.Substring(8));
}
if (closed && path.Segments.Count > 0) {
var first = path.Segments.First();
var last = path.Segments.Last();
first.StartNormal = last.EndNormal = (first.StartNormal + last.EndNormal) / 2;
path.SharpEnd = true;
path.SharpStart = true;
}
return path;
}
public List<LinePath> ToLinePaths()
{
return Paths.Select(x => ToLinePath(x)).ToList();
}
}
}

View file

@ -0,0 +1,484 @@
using FSO.Common.WorldGeometry.Paths;
using Microsoft.Xna.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
namespace FSO.Common.WorldGeometry
{
public class RoadMesh
{
public int LastIndex;
public List<int> Indices = new List<int>();
public List<MeshPoint> Vertices = new List<MeshPoint>();
}
public class RoadDetectedIntersection
{
public LinePath MainPath;
public LinePath SubPath;
public RoadGeometryTemplate Template;
public float MainDist;
public float SubDist;
public bool ThreeWay;
public Vector2 Center;
public Vector2 AlignmentY; //how to transform Y coords
public Vector2 AlignmentX; //how to transform X coords
}
public class RoadGeometry
{
public List<LinePath> Paths;
public List<RoadDetectedIntersection> Intersections;
public List<RoadGeometryTemplate> Templates;
public RoadGeometry(List<LinePath> paths, List<RoadGeometryTemplate> templates)
{
Paths = paths;
Templates = templates;
}
private float IntersectionDistance(Vector3 inter1, Vector3 inter2)
{
return Vector2.Distance(new Vector2(inter1.X, inter1.Y), new Vector2(inter2.X, inter2.Y));
}
public void GenerateIntersections()
{
Intersections = new List<RoadDetectedIntersection>();
for (int i = 0; i < Paths.Count; i++)
{
var path1 = Paths[i];
for (int j = i + 1; j < Paths.Count; j++)
{
var path2 = Paths[j];
var inters = path1.Intersections(path2);
foreach (var inter in inters)
{
//find corresponding intersection in path2
var inter2n = path2.Intersections(path1).Cast<Vector3?>().FirstOrDefault(x => IntersectionDistance(x.Value, inter) < 1);
if (inter2n != null)
{
var inter2 = inter2n.Value;
int primaryLine = 0;
if (inter2.Z < 1 || inter2.Z > path2.Length-1)
{
primaryLine = 1;
}
if (inter.Z < 1 || inter.Z > path1.Length-1)
{
if (primaryLine != 0)
{
throw new Exception("2 way intersection currently not supported. Make a curve instead.");
}
primaryLine = 2;
}
bool threeWay = primaryLine != 0;
if (!threeWay) primaryLine = 1;
var mainPath = (primaryLine == 1) ? path1 : path2;
var subPath = (primaryLine == 2) ? path1 : path2;
var mainDist = (primaryLine == 1) ? inter.Z : inter2.Z;
var subDist = (primaryLine == 2) ? inter.Z : inter2.Z;
var primaryAlign = mainPath.GetPositionNormalAt(mainDist);
var vert = primaryAlign.Item2;
vert = new Vector2(vert.Y, -vert.X);
float xflip = 1;
if (threeWay)
{
var normalSub = subPath.GetPositionNormalAt(subDist).Item2;
if (subDist < 1) normalSub = -normalSub;
if (Vector2.Dot(vert, normalSub) < 0) xflip = -1;
}
Intersections.Add(new RoadDetectedIntersection()
{
MainPath = mainPath,
SubPath = subPath,
MainDist = mainDist,
SubDist = subDist,
ThreeWay = threeWay,
Center = new Vector2(inter.X, inter.Y),
AlignmentY = vert, //how to transform Y coords
AlignmentX = primaryAlign.Item2 * xflip //how to transform X coords
});
}
}
}
}
//split the road paths based on these intersections.
foreach (var intersection in Intersections)
{
Paths.Remove(intersection.MainPath);
Paths.Remove(intersection.SubPath);
intersection.Template = Templates[Math.Max(intersection.MainPath.TemplateNum, intersection.SubPath.TemplateNum)];
var mSplit = intersection.MainPath.Split(intersection.MainDist - intersection.MainPath.StartOffset, intersection.Template.IntersectionSize);
var sSplit = intersection.SubPath.Split(intersection.SubDist - intersection.SubPath.StartOffset, intersection.Template.IntersectionFromSize);
Paths.AddRange(mSplit);
Paths.AddRange(sSplit);
if (mSplit.Any(x => float.IsNaN(x.Length)) || sSplit.Any(x => float.IsNaN(x.Length))) { }
//update intersections that use these paths to reference the new split paths
foreach (var inter2 in Intersections)
{
if (inter2 == intersection) continue;
if (inter2.MainPath == intersection.MainPath)
{
if (inter2.MainDist > intersection.MainDist) inter2.MainPath = mSplit.Last();
else inter2.MainPath = mSplit[0];
}
if (inter2.MainPath == intersection.SubPath)
{
if (inter2.MainDist > intersection.SubDist) inter2.MainPath = sSplit.Last();
else inter2.MainPath = sSplit[0];
}
if (inter2.SubPath == intersection.MainPath)
{
if (inter2.SubDist > intersection.MainDist) inter2.SubPath = mSplit.Last();
else inter2.SubPath = mSplit[0];
}
if (inter2.SubPath == intersection.SubPath)
{
if (inter2.SubDist > intersection.SubDist) inter2.SubPath = sSplit.Last();
else inter2.SubPath = sSplit[0];
}
}
}
}
public Dictionary<ushort, RoadMesh> Meshes;
private void AddTriangle(List<int> indices, int i1, int i2, int i3)
{
indices.Add(i1);
indices.Add(i2);
indices.Add(i3);
}
public void GenerateRoadGeometry()
{
Meshes = new Dictionary<ushort, RoadMesh>();
foreach (var seg in Templates[0].Segments)
{
foreach (var line in seg.Lines)
{
if (!Meshes.ContainsKey(line.FloorTile)) Meshes[line.FloorTile] = new RoadMesh();
}
}
foreach (var path in Paths)
{
path.PrepareJoins();
var template = Templates[path.TemplateNum];
if (path.Segments.Count == 0) continue;
if (path.Length < 1) { }
if (!path.SharpStart)
{
var seg = path.Segments.First();
CapEnd(template, seg.Start, -seg.StartNormal);
}
//generate the line
float linePosition = 0;
float virtualPosition = 0;// path.StartOffset;
var startSegment = template.GetSegmentForOffset(virtualPosition);
RoadGeometryTemplateSegment currentSegment = startSegment.Item1;
float remaining = startSegment.Item2;
bool end;
int i = 0;
do
{
end = linePosition + remaining >= path.Length;
if (end) remaining = path.Length - linePosition;
foreach (var mesh in Meshes.Values) mesh.LastIndex = mesh.Vertices.Count;
for (int j = 0; j < 2; j++)
{
var basePos = path.GetPositionNormalAt(linePosition);
foreach (var line in currentSegment.Lines)
{
var mesh = Meshes[line.FloorTile];
if (j > 0)
{
//create triangles
AddTriangle(mesh.Indices, mesh.LastIndex, mesh.Vertices.Count, mesh.LastIndex + 1);
AddTriangle(mesh.Indices, mesh.Vertices.Count, mesh.Vertices.Count + 1, mesh.LastIndex + 1);
mesh.LastIndex += 2;
}
var spos2d = basePos.Item1 + basePos.Item2 * line.Start.X;
var stc = FloorTC(new Vector2(line.Start.X, virtualPosition) + line.UVOff);
mesh.Vertices.Add(new MeshPoint(new Vector3(spos2d.X, line.Start.Y, spos2d.Y), stc));
var epos2d = basePos.Item1 + basePos.Item2 * line.End.X;
var etc = FloorTC(new Vector2(line.End.X, virtualPosition) + line.UVOff);
mesh.Vertices.Add(new MeshPoint(new Vector3(epos2d.X, line.End.Y, epos2d.Y), etc));
}
i++;
if (j == 0)
{
virtualPosition += remaining;
linePosition += remaining;
}
}
currentSegment = currentSegment.Next;
} while (!end);
if (!path.SharpEnd)
{
var seg = path.Segments.Last();
CapEnd(template, seg.End, seg.EndNormal);
}
}
if (Intersections != null)
{
foreach (var intersection in Intersections)
{
PlaceIntersection(intersection);
}
}
}
private Vector2 FloorTC(Vector2 vec)
{
return new Vector2(-0.5f + vec.X - vec.Y, 0.5f + vec.X + vec.Y) * 0.5f;
}
public void PlaceIntersection(RoadDetectedIntersection intersection) {
var template = intersection.Template;
var iTemplate = intersection.ThreeWay ? template.Intersection3Way : template.Intersection4Way;
var off = new Vector2(template.IntersectionFromSize, template.IntersectionSize)/2;
var ctr = intersection.Center;
var xm = intersection.AlignmentX;
var ym = intersection.AlignmentY;
foreach (var rect in iTemplate)
{
RoadMesh mesh;
if (!Meshes.TryGetValue(rect.FloorTile, out mesh))
{
mesh = new RoadMesh();
Meshes[rect.FloorTile] = mesh;
}
var ind = mesh.Vertices.Count;
var pos = rect.Rect.Location.ToVector2() - off + rect.Offset;
var tcOff = off + new Vector2(0.5f, 0f) - rect.Offset;
var pos2 = xm * pos.X + ym * pos.Y + ctr;
mesh.Vertices.Add(new MeshPoint(new Vector3(pos2.X, 0, pos2.Y), FloorTC(pos + tcOff)));
pos += new Vector2(rect.Rect.Width, 0);
pos2 = xm * pos.X + ym * pos.Y + ctr;
mesh.Vertices.Add(new MeshPoint(new Vector3(pos2.X, 0, pos2.Y), FloorTC(pos + tcOff)));
pos += new Vector2(0, rect.Rect.Height);
pos2 = xm * pos.X + ym * pos.Y + ctr;
mesh.Vertices.Add(new MeshPoint(new Vector3(pos2.X, 0, pos2.Y), FloorTC(pos + tcOff)));
pos += new Vector2(-rect.Rect.Width, 0);
pos2 = xm * pos.X + ym * pos.Y + ctr;
mesh.Vertices.Add(new MeshPoint(new Vector3(pos2.X, 0, pos2.Y), FloorTC(pos + tcOff)));
AddTriangle(mesh.Indices, ind, ind + 1, ind + 2);
AddTriangle(mesh.Indices, ind, ind + 2, ind + 3);
}
}
public void CapEnd(RoadGeometryTemplate template, Vector2 position, Vector2 normal)
{
foreach (var mesh in Meshes.Values) mesh.LastIndex = mesh.Vertices.Count;
var lines = template.EndLines;
for (int i=0; i<=template.EndRepeats; i++) {
var angle = (i * Math.PI) / template.EndRepeats;
var c = (float)Math.Cos(angle);
var s = (float)Math.Sin(angle);
Vector2 xToCoord = new Vector2(c * normal.X - s * normal.Y, s * normal.X + c * normal.Y);
Vector2 xToTc = new Vector2(c, s);
foreach (var line in lines)
{
var mesh = Meshes[line.FloorTile];
if (line.TriangleCap)
{
if (i == 0)
{ //create the point we rotate around
line.TempIndex = mesh.Vertices.Count;
var pos2d = position + xToCoord * line.End.X;
var tc = FloorTC(xToTc * line.End.X + line.UVOff);
mesh.Vertices.Add(new MeshPoint(new Vector3(pos2d.X, line.End.Y, pos2d.Y), tc));
mesh.LastIndex++;
}
if (i > 0)
{
//create triangles
AddTriangle(mesh.Indices, mesh.LastIndex++, mesh.Vertices.Count, line.TempIndex);
}
var spos2d = position + xToCoord * line.Start.X;
var stc = FloorTC(xToTc * line.Start.X + line.UVOff);
mesh.Vertices.Add(new MeshPoint(new Vector3(spos2d.X, line.Start.Y, spos2d.Y), stc));
}
else
{
if (i > 0)
{
//create triangles
AddTriangle(mesh.Indices, mesh.LastIndex, mesh.Vertices.Count, mesh.LastIndex + 1);
AddTriangle(mesh.Indices, mesh.Vertices.Count, mesh.Vertices.Count + 1, mesh.LastIndex + 1);
mesh.LastIndex += 2;
}
var spos2d = position + xToCoord * line.Start.X;
var stc = FloorTC(new Vector2(line.Start.X, i) + line.UVOff);
mesh.Vertices.Add(new MeshPoint(new Vector3(spos2d.X, line.Start.Y, spos2d.Y), stc));
var epos2d = position + xToCoord * line.End.X;
var etc = FloorTC(new Vector2(line.End.X, i) + line.UVOff);
mesh.Vertices.Add(new MeshPoint(new Vector3(epos2d.X, line.End.Y, epos2d.Y), etc));
}
}
}
}
}
public class RoadGeometryTemplate
{
private RoadGeometryTemplateSegment[] _Segments;
public RoadGeometryTemplateSegment[] Segments
{
get
{
return _Segments;
}
set
{
RepeatLength = 0;
for (int i=0; i<value.Length; i++)
{
var seg = value[i];
RepeatLength += seg.Extent;
seg.Next = value[(i + 1) % value.Length];
}
value[value.Length - 1].Next = value[0];
_Segments = value;
}
}
public float RepeatLength; //sum of all segment extents.
public RoadGeometryTemplateLine[] EndLines; //(x, y) lines to rotate around z = 0. eg. line at left half of road, rotated clockwise through to make a circular sweep finishing at the right.
public int EndRepeats; //number of subdivisions the end semicircle is drawn with. Should be about PI * radius if you want to keep pavements consistent.
public float IntersectionSize; //intersections are expected to be square and rotatable
public float IntersectionFromSize;
public RoadGeometryTemplateRect[] Intersection4Way;
/// <summary>
/// Same as Intersection4Way, but inserted when there are only three connecting lines.
/// This template represents the y direction being the route for the straight 2 lines, and then x positive being the third (to the right).
/// This is appropriately flipped if the intersection is on the left.
/// </summary>
public RoadGeometryTemplateRect[] Intersection3Way;
public Tuple<RoadGeometryTemplateSegment, float> GetSegmentForOffset(float offset)
{
var moffset = offset % RepeatLength;
var result = Segments.First();
float soFar = 0;
foreach (var seg in Segments)
{
if (soFar + seg.Extent > moffset)
{
//this segment has not ended yet
return new Tuple<RoadGeometryTemplateSegment, float>(seg, (soFar + seg.Extent) - moffset);
}
//otherwise move onto the next
soFar += seg.Extent;
}
return new Tuple<RoadGeometryTemplateSegment, float>(Segments.Last(), (soFar + Segments.Last().Extent) - moffset);
}
}
public class RoadGeometryTemplateSegment
{
public float Extent; //the extent of this segment before moving onto the next segment
public RoadGeometryTemplateLine[] Lines; //(x, y) lines to extend into z. x is a horizontal offset depending on the direction of the line
public RoadGeometryTemplateSegment Next;
}
public class RoadGeometryTemplateLine
{
public Vector2 Start;
public Vector2 End;
public Vector2 UVOff;
public ushort FloorTile;
public bool TriangleCap;
public int TempIndex;
/// <summary>
/// Liney
/// </summary>
/// <param name="start">The start of this line.</param>
/// <param name="end"></param>
/// <param name="floorTile">The floor tile to use for this line.</param>
public RoadGeometryTemplateLine(Vector2 start, Vector2 end, ushort floorTile)
{
Start = start;
End = end;
FloorTile = floorTile;
TriangleCap = End == Vector2.Zero;
}
public RoadGeometryTemplateLine(Vector2 start, Vector2 end, Vector2 uvOff, ushort floorTile) : this(start, end, floorTile)
{
UVOff = uvOff;
}
}
public class RoadGeometryTemplateRect
{
public Rectangle Rect;
public ushort FloorTile;
public Vector2 Offset;
public RoadGeometryTemplateRect(Rectangle rect, ushort floorTile)
{
Rect = rect;
FloorTile = floorTile;
}
public RoadGeometryTemplateRect(Rectangle rect, ushort floorTile, Vector2 offset)
{
Rect = rect;
FloorTile = floorTile;
Offset = offset;
}
}
}

View file

@ -0,0 +1,493 @@
using Microsoft.Xna.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
namespace FSO.Common.WorldGeometry
{
public class SimplifiedHeightmap
{
public float HeightMultiplier = 1 / 40f;
public int Size;
public int Size1;
public ushort[] Map; //10x resolution of ts1 terrain.
public ushort[][] SecondDerivativePyramid;
public SimplifiedHeightmap(int size, ushort[] data)
{
Size = size;
Size1 = size - 1;
Map = data;
BuildSecondDerivative();
}
public void BuildSecondDerivative()
{
//first, build the full res second derivative map
var sd = new ushort[Map.Length];
int i = 0;
//x derivative
for (int y = 0; y < Size; y++)
{
ushort lastValue = Map[i++];
ushort firstDerivative = 0;
for (int x = 1; x < Size; x++)
{
ushort value = Map[i];
ushort newFirstDerivative = (ushort)Math.Abs(value - lastValue);
sd[(i++) - 1] = (ushort)Math.Abs(newFirstDerivative - firstDerivative);
firstDerivative = newFirstDerivative;
lastValue = value;
}
}
//y derivative
i = 0;
for (int y = 0; y < Size; y++)
{
i = y;
ushort lastValue = Map[i];
i += Size;
ushort firstDerivative = 0;
for (int x = 1; x < Size; x++)
{
ushort value = Map[i];
ushort newFirstDerivative = (ushort)Math.Abs(value - lastValue);
sd[i-Size] = Math.Max(sd[i-Size], (ushort)Math.Abs(newFirstDerivative - firstDerivative));
i += Size;
firstDerivative = newFirstDerivative;
lastValue = value;
}
}
//build mipLevels
var levels = 7; //gen 2x2 through 64x64
SecondDerivativePyramid = new ushort[levels][];
SecondDerivativePyramid[0] = sd;
var curLevel = sd;
for (int mip = 1; mip < levels; mip++)
{
var size = (int)Math.Sqrt(curLevel.Length);
var mipLevel = new ushort[curLevel.Length / 4];
i = 0;
for (int y = 0; y < size; y++)
{
var target = (y / 2) * size / 2;
for (int x = 0; x < size; x += 2)
{
mipLevel[target] = Math.Max(mipLevel[target], Math.Max(curLevel[i++], curLevel[i++]));
target++;
}
}
SecondDerivativePyramid[mip] = mipLevel;
curLevel = mipLevel;
}
}
//second derivitive required to subdivide further.
public short[] HighDetailThresholds =
{
20, //1x1
16, //2x2: at least one derivative about half as tall as a block
10, //4x4
7, //8x8
4, //16x16
2, //32x32
1, //64x64
};
List<HeightmapChunk> Chunks;
private Dictionary<Point, int> PointToIndex;
public List<int> Indices;
public List<Vector3> Vertices;
//how the simplification works:
//we generate a "maximum second derivative" map from the heightmap.
//we then create a maximum value image pyramid with the maximum value in the 4 pixels beneath
//when generating the mesh, we fall into quadrants below if the second derivative is above a threshold.
public void GenerateFullTree()
{
//how the algorithm works:
//build a base structure with quad trees
Chunks = new List<HeightmapChunk>();
var levels = SecondDerivativePyramid.Length;
var chunkSize = 1 << levels;
var cw = Size / chunkSize;
for (int y = 0; y < Size; y += chunkSize)
{
for (int x = 0; x < Size; x += chunkSize)
{
var chunk = new HeightmapChunk(new Rectangle(x, y, chunkSize, chunkSize), levels,
(x == 0) ? null : Chunks.Last(),
(y == 0) ? null : Chunks[Chunks.Count - cw]);
Chunks.Add(chunk);
}
}
var thresholds = HighDetailThresholds;
var toTraverse = new Queue<HeightmapQuadTreeNode>(Chunks);
while (toTraverse.Count > 0)
{
var node = toTraverse.Dequeue();
var mipLevel = node.MipLevel;
var sd = SecondDerivativePyramid[mipLevel-1];
var mipWidth = Size >> (mipLevel-1);
var pos = (node.Range.X >> (mipLevel - 1)) + (node.Range.Y >> (mipLevel - 1)) * mipWidth;
//check the max second derivative of the 4 potential derivatives.
var threshold = HighDetailThresholds[mipLevel - 1];
if (sd[pos] >= threshold) //top left
{
var newNode = node.GetOrAdd(0, true);
if (mipLevel > 1) toTraverse.Enqueue(newNode);
}
if (sd[pos+1] >= threshold) //top right
{
var newNode = node.GetOrAdd(1, true);
if (mipLevel > 1) toTraverse.Enqueue(newNode);
}
if (sd[pos + mipWidth] >= threshold) //bottom left
{
var newNode = node.GetOrAdd(2, true);
if (mipLevel > 1) toTraverse.Enqueue(newNode);
}
if (sd[pos + mipWidth + 1] >= threshold) //top right
{
var newNode = node.GetOrAdd(3, true);
if (mipLevel > 1) toTraverse.Enqueue(newNode);
}
}
}
public void GenerateMesh()
{
//traverse the chunk tree, generating meshes for each.
PointToIndex = new Dictionary<Point, int>();
Vertices = new List<Vector3>();
Indices = new List<int>();
foreach (var chunk in Chunks)
{
chunk.Triangulate(this);
}
}
public int GetVertex(Point pt)
{
int index;
if (!PointToIndex.TryGetValue(pt, out index))
{
index = Vertices.Count;
var x = Math.Min(Size1, pt.X);
var y = Math.Min(Size1, pt.Y);
Vertices.Add(new Vector3(pt.X, Map[x + y * Size] * HeightMultiplier, pt.Y));
PointToIndex[pt] = index;
}
return index;
}
public void AddTri(int i1, int i2, int i3)
{
Indices.Add(i1);
Indices.Add(i2);
Indices.Add(i3);
}
}
public class HeightmapQuadTreeNode
{
public bool Reduced;
public int MipLevel;
public int ParentInd = -1; //the
HeightmapQuadTreeNode Parent;
public Rectangle Range;
public HeightmapQuadTreeNode[] Children = new HeightmapQuadTreeNode[]
{
null, null, null, null //top left, top right, bottom left, bottom right (row order)
};
public HeightmapQuadTreeNode(HeightmapQuadTreeNode parent, Rectangle range)
{
Parent = parent;
Range = range;
MipLevel = (parent?.MipLevel ?? 6) - 1;
}
public HeightmapQuadTreeNode GetOrAdd(int index, bool doSpread)
{
HeightmapQuadTreeNode result;
if (Children[index] == null)
{
var rect = Range;
rect.Width /= 2;
rect.Height /= 2;
if ((index % 2) == 1) rect.X += rect.Width;
if (index > 1) rect.Y += rect.Height;
result = new HeightmapQuadTreeNode(this, rect);
result.ParentInd = index;
Children[index] = result;
doSpread = true;
} else {
result = Children[index];
}
if (doSpread) {
if (Parent != null)
{
//find adjacent quad to add to.
//for example if we are in index 0 (top left), make sure there is:
// - a subdivision in the top right (1) of the tile to our left,
// - a subdivision in the bottom left (2) of the tile above us,
// - a subdivision in the bottom right (3) of the tile above and left
//index 1 (top right
switch (index)
{
case 0: //top left
{
var left = result.FindOrCreateQuadInDirection(3);
var up = result.FindOrCreateQuadInDirection(0);
if (up != null) up.FindOrCreateQuadInDirection(3);
break;
}
case 1: //top right
{
var right = result.FindOrCreateQuadInDirection(1);
var up = result.FindOrCreateQuadInDirection(0);
if (up != null) up.FindOrCreateQuadInDirection(1);
break;
}
case 2: //bottom left
{
var left = result.FindOrCreateQuadInDirection(3);
var bottom = result.FindOrCreateQuadInDirection(2);
if (bottom != null) bottom.FindOrCreateQuadInDirection(3);
break;
}
case 3: //bottom right
{
var right = result.FindOrCreateQuadInDirection(1);
var bottom = result.FindOrCreateQuadInDirection(2);
if (bottom != null) bottom.FindOrCreateQuadInDirection(1);
break;
}
}
}
}
return result;
}
public virtual HeightmapQuadTreeNode FindOrCreateQuadInDirection(int dir)
{
//dir: up, right, down, left
if (Parent == null) return null;
switch (dir)
{
case 0: //up
//if we're on the bottom row, finding the quad is easy.
if (ParentInd > 1)
{
return Parent.GetOrAdd(ParentInd - 2, false);
}
else
{
//on the top row. we need to break out to add a quad above.
var aboveParent = Parent.FindOrCreateQuadInDirection(dir);
//our adjacent should be on the above parent's bottom row.
return aboveParent?.GetOrAdd(ParentInd + 2, false);
}
case 1: //right
//if we're on the left row, finding the quad is easy.
if ((ParentInd % 2) == 0)
{
return Parent.GetOrAdd(ParentInd + 1, false);
}
else
{
//on the right row. we need to break out to add a quad above.
var rightParent = Parent.FindOrCreateQuadInDirection(dir);
//our adjacent should be on the right parent's left row.
return rightParent?.GetOrAdd(ParentInd - 1, false);
}
case 2: //down
//if we're on the top row, finding the quad is easy.
if (ParentInd < 2)
{
return Parent.GetOrAdd(ParentInd + 2, false);
}
else
{
//on the right row. we need to break out to add a quad above.
var belowParent = Parent.FindOrCreateQuadInDirection(dir);
//our adjacent should be on the below parent's top row.
return belowParent?.GetOrAdd(ParentInd - 2, false);
}
case 3: //left
//if we're on the right row, finding the quad is easy.
if ((ParentInd % 2) == 1)
{
return Parent.GetOrAdd(ParentInd - 1, false);
}
else
{
//on the left row. we need to break out to add a quad above.
var leftParent = Parent.FindOrCreateQuadInDirection(dir);
//our adjacent should be on the left parent's right row.
return leftParent?.GetOrAdd(ParentInd + 1, false);
}
}
return null;
}
public void Triangulate(SimplifiedHeightmap parent)
{
var cTriangulated = 0;
foreach (var child in Children)
{
if (child != null)
{
child.Triangulate(parent);
cTriangulated++;
}
}
if (cTriangulated == 0)
{
//no children means we are a leaf. triangulate, cause nobody else is doing it for me.
var lt = parent.GetVertex(Range.Location);
var rt = parent.GetVertex(Range.Location + new Point(Range.Width, 0));
var rb = parent.GetVertex(Range.Location + Range.Size);
var lb = parent.GetVertex(Range.Location + new Point(0, Range.Height));
parent.AddTri(lt, rt, rb);
parent.AddTri(lt, rb, lb);
}
else if (cTriangulated < 4)
{
//complex: we have children, but we also need to make our own geometry.
var ctr = parent.GetVertex(Range.Location + new Point(Range.Width/2, Range.Height/2));
var lt = parent.GetVertex(Range.Location);
var rt = parent.GetVertex(Range.Location + new Point(Range.Width, 0));
var rb = parent.GetVertex(Range.Location + Range.Size);
var lb = parent.GetVertex(Range.Location + new Point(0, Range.Height));
if (Children[0] == null) //from top left
{
if (Children[1] == null) //top right
{
//triangle lt to rt: \/
parent.AddTri(lt, rt, ctr);
}
else
{
//triangle lt to mt: \|
var mt = parent.GetVertex(Range.Location + new Point(Range.Width / 2, 0));
parent.AddTri(lt, mt, ctr);
}
if (Children[2] == null) //bottom left
{
//triangle lt to lb: \
// /
parent.AddTri(lt, ctr, lb);
}
else
{
//triangle lt to lm: _\
var lm = parent.GetVertex(Range.Location + new Point(0, Range.Height / 2));
parent.AddTri(lt, ctr, lm);
}
}
else
{
if (Children[1] == null) //top right but no top left
{
//triangle mt to rt: |/
var mt = parent.GetVertex(Range.Location + new Point(Range.Width / 2, 0));
parent.AddTri(mt, rt, ctr);
}
if (Children[2] == null) //bottom left but no top left
{
//triangle lm to lb: _
// /
var lm = parent.GetVertex(Range.Location + new Point(0, Range.Height / 2));
parent.AddTri(lm, ctr, lb);
}
}
if (Children[3] == null) //from bottom right
{
if (Children[1] == null) //top right
{
//triangle rt to rb: /
// \
parent.AddTri(rt, rb, ctr);
}
else
{
//triangle rm to rb: _
// \
var rm = parent.GetVertex(Range.Location + new Point(Range.Width, Range.Height / 2));
parent.AddTri(rm, rb, ctr);
}
if (Children[2] == null) //bottom left
{
//triangle lb to rb: /\
parent.AddTri(lb, ctr, rb);
}
else
{
//triangle mb to rb: |\
var mb = parent.GetVertex(Range.Location + new Point(Range.Width / 2, Range.Height));
parent.AddTri(mb, ctr, rb);
}
}
else
{
if (Children[1] == null) //top right, no bottom right
{
//triangle rt to rm: /_
var rm = parent.GetVertex(Range.Location + new Point(Range.Width, Range.Height / 2));
parent.AddTri(rt, rm, ctr);
}
if (Children[2] == null) //bottom left, no bottom right
{
//triangle mb to lb: /|
var mb = parent.GetVertex(Range.Location + new Point(Range.Width / 2, Range.Height));
parent.AddTri(mb, lb, ctr);
}
}
}
}
}
public class HeightmapChunk : HeightmapQuadTreeNode
{
public HeightmapChunk[] Adjacent = new HeightmapChunk[]
{
null, null, null, null //up, right, down, left
};
public HeightmapChunk(Rectangle range, int mipLevel, HeightmapChunk left, HeightmapChunk top) : base(null, range)
{
Adjacent[3] = left;
Adjacent[0] = top;
if (left != null) left.Adjacent[1] = this;
if (top != null) top.Adjacent[2] = this;
MipLevel = mipLevel;
}
public override HeightmapQuadTreeNode FindOrCreateQuadInDirection(int dir)
{
return Adjacent[dir];
}
}
}

View file

@ -0,0 +1,230 @@
using Microsoft.Xna.Framework;
using System.Collections.Generic;
namespace FSO.Common.WorldGeometry
{
public static class TS1RoadTemplates
{
private static ushort ROAD_TILE = 9;
private static ushort ROAD_LINE_LT_RB = 10;
private static ushort ROAD_LINE_LB_RT = 11;
private static ushort PAVEMENT_TILE = 12;
private static ushort DOWNTOWN_PAVEMENT_LIGHT = 352;
private static ushort DOWNTOWN_GRATE_LIGHT = 350;
private static ushort DOWNTOWN_MANHOLE_LIGHT = 351;
private static ushort DOWNTOWN_PAVEMENT_DARK = 355;
private static ushort DOWNTOWN_GRATE_DARK = 353;
private static ushort DOWNTOWN_MANHOLE_DARK = 354;
private static ushort VACATION_ROAD = 359; //awfully flat
private static Vector2 Flat(float xOff)
{
return new Vector2(xOff, 0);
}
public static RoadGeometryTemplate OLD_TOWN = new RoadGeometryTemplate()
{
Segments = new RoadGeometryTemplateSegment[]
{
//without middle line (3 tiles long)
new RoadGeometryTemplateSegment()
{
Extent = 3f,
Lines = new RoadGeometryTemplateLine[]
{
new RoadGeometryTemplateLine(Flat(-5.5f), Flat(-4.5f), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(-3.5f), Flat(3.5f), ROAD_TILE),
new RoadGeometryTemplateLine(Flat(4.5f), Flat(5.5f), PAVEMENT_TILE),
}
},
//with middle line (3 tiles long)
new RoadGeometryTemplateSegment()
{
Extent = 3f,
Lines = new RoadGeometryTemplateLine[]
{
new RoadGeometryTemplateLine(Flat(-5.5f), Flat(-4.5f), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(-3.5f), Flat(-0.5f), ROAD_TILE),
new RoadGeometryTemplateLine(Flat(-0.5f), Flat(0.5f), ROAD_LINE_LT_RB),
new RoadGeometryTemplateLine(Flat(0.5f), Flat(3.5f), ROAD_TILE),
new RoadGeometryTemplateLine(Flat(4.5f), Flat(5.5f), PAVEMENT_TILE),
}
},
},
RepeatLength = 6f,
EndLines = new RoadGeometryTemplateLine[]
{
new RoadGeometryTemplateLine(Flat(-5.5f), Flat(-4.5f), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(-3.5f), Flat(0f), ROAD_TILE),
},
EndRepeats = 17,
IntersectionSize = 13, //7 wide road, 1 tile gap on each side, 1 tile pavement on each side, 1 tile gap again
IntersectionFromSize = 13,
Intersection4Way = new RoadGeometryTemplateRect[]
{
//pavement
new RoadGeometryTemplateRect(new Rectangle(1, 0, 1, 3), PAVEMENT_TILE), //top left cross
new RoadGeometryTemplateRect(new Rectangle(0, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(2, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 0, 1, 3), PAVEMENT_TILE), //top right cross
new RoadGeometryTemplateRect(new Rectangle(10, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(12, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(1, 10, 1, 3), PAVEMENT_TILE), //bottom left cross
new RoadGeometryTemplateRect(new Rectangle(0, 11, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(2, 11, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 10, 1, 3), PAVEMENT_TILE), //bottom right cross
new RoadGeometryTemplateRect(new Rectangle(10, 11, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(12, 11, 1, 1), PAVEMENT_TILE),
//road
new RoadGeometryTemplateRect(new Rectangle(3, 3, 7, 7), ROAD_TILE), //center
new RoadGeometryTemplateRect(new Rectangle(3, 1, 7, 1), ROAD_TILE), //top
new RoadGeometryTemplateRect(new Rectangle(3, 11, 7, 1), ROAD_TILE), //bottom
new RoadGeometryTemplateRect(new Rectangle(1, 3, 1, 7), ROAD_TILE), //left
new RoadGeometryTemplateRect(new Rectangle(11, 3, 1, 7), ROAD_TILE), //right
//road lines (vertical)
new RoadGeometryTemplateRect(new Rectangle(0, 3, 1, 7), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(2, 3, 1, 7), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(10, 3, 1, 7), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(12, 3, 1, 7), ROAD_LINE_LT_RB),
//road lines (horizontal)
new RoadGeometryTemplateRect(new Rectangle(3, 0, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 2, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 10, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 12, 7, 1), ROAD_LINE_LB_RT),
},
Intersection3Way = new RoadGeometryTemplateRect[]
{
//pavement
new RoadGeometryTemplateRect(new Rectangle(1, 0, 1, 13), PAVEMENT_TILE), //left pavement (with 2 joins)
new RoadGeometryTemplateRect(new Rectangle(2, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(2, 11, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 0, 1, 3), PAVEMENT_TILE), //top right cross
new RoadGeometryTemplateRect(new Rectangle(10, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(12, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 10, 1, 3), PAVEMENT_TILE), //bottom right cross
new RoadGeometryTemplateRect(new Rectangle(10, 11, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(12, 11, 1, 1), PAVEMENT_TILE),
//road
new RoadGeometryTemplateRect(new Rectangle(3, 3, 7, 7), ROAD_TILE), //center
new RoadGeometryTemplateRect(new Rectangle(3, 1, 7, 1), ROAD_TILE), //top
new RoadGeometryTemplateRect(new Rectangle(3, 11, 7, 1), ROAD_TILE), //bottom
new RoadGeometryTemplateRect(new Rectangle(11, 3, 1, 7), ROAD_TILE), //right
//road lines (vertical)
new RoadGeometryTemplateRect(new Rectangle(10, 3, 1, 7), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(12, 3, 1, 7), ROAD_LINE_LT_RB),
//road lines (horizontal)
new RoadGeometryTemplateRect(new Rectangle(3, 0, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 2, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 10, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 12, 7, 1), ROAD_LINE_LB_RT),
}
};
public static RoadGeometryTemplate OLD_TOWN_DUAL = new RoadGeometryTemplate()
{
Segments = new RoadGeometryTemplateSegment[]
{
//this road type does not have a middle line.
new RoadGeometryTemplateSegment()
{
Extent = 3f,
Lines = new RoadGeometryTemplateLine[]
{
new RoadGeometryTemplateLine(Flat(-8.5f), Flat(-7.5f), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(-6.5f), Flat(-2.5f), ROAD_TILE),
new RoadGeometryTemplateLine(Flat(-2f), Flat(-1f), new Vector2(0.5f, 0), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(1f), Flat(2f), new Vector2(0.5f, 0), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(2.5f), Flat(6.5f), ROAD_TILE),
new RoadGeometryTemplateLine(Flat(7.5f), Flat(8.5f), PAVEMENT_TILE),
}
},
},
RepeatLength = 3f,
EndLines = new RoadGeometryTemplateLine[]
{
new RoadGeometryTemplateLine(Flat(-8.5f), Flat(-7.5f), PAVEMENT_TILE),
new RoadGeometryTemplateLine(Flat(-6.5f), Flat(-2.5f), ROAD_TILE),
new RoadGeometryTemplateLine(Flat(-2f), Flat(-1f), new Vector2(0.5f, 0), PAVEMENT_TILE),
},
EndRepeats = 22,
IntersectionSize = 19, //7 wide road, 1 tile gap on each side, 1 tile pavement on each side, 1 tile gap again
IntersectionFromSize = 13, //used for 3 way intersection on special road types. here it is the width of the normal road
//UNUSED
Intersection4Way = OLD_TOWN.Intersection4Way,
Intersection3Way = new RoadGeometryTemplateRect[]
{ //19 tall, 13 wide
//pavement
new RoadGeometryTemplateRect(new Rectangle(1, 0, 1, 19), PAVEMENT_TILE), //left pavement (with 2 joins)
new RoadGeometryTemplateRect(new Rectangle(2, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(2, 17, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 0, 1, 3), PAVEMENT_TILE), //top right cross
new RoadGeometryTemplateRect(new Rectangle(10, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(12, 1, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 16, 1, 3), PAVEMENT_TILE), //bottom right cross
new RoadGeometryTemplateRect(new Rectangle(10, 17, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(12, 17, 1, 1), PAVEMENT_TILE),
new RoadGeometryTemplateRect(new Rectangle(11, 7, 1, 5), PAVEMENT_TILE), //right path
new RoadGeometryTemplateRect(new Rectangle(12, 7, 1, 1), PAVEMENT_TILE, new Vector2(0, 0.5f)), //right off1
new RoadGeometryTemplateRect(new Rectangle(12, 10, 1, 1), PAVEMENT_TILE, new Vector2(0, 0.5f)), //right off2
//road
new RoadGeometryTemplateRect(new Rectangle(3, 3, 7, 13), ROAD_TILE), //center
new RoadGeometryTemplateRect(new Rectangle(3, 1, 7, 1), ROAD_TILE), //top
new RoadGeometryTemplateRect(new Rectangle(3, 17, 7, 1), ROAD_TILE), //bottom
new RoadGeometryTemplateRect(new Rectangle(11, 3, 1, 4), ROAD_TILE), //right
new RoadGeometryTemplateRect(new Rectangle(11, 12, 1, 4), ROAD_TILE), //right
//road lines (vertical)
new RoadGeometryTemplateRect(new Rectangle(10, 3, 1, 4), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(12, 3, 1, 4), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(10, 12, 1, 4), ROAD_LINE_LT_RB),
new RoadGeometryTemplateRect(new Rectangle(12, 12, 1, 4), ROAD_LINE_LT_RB),
//road lines (horizontal)
new RoadGeometryTemplateRect(new Rectangle(3, 0, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 2, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 16, 7, 1), ROAD_LINE_LB_RT),
new RoadGeometryTemplateRect(new Rectangle(3, 18, 7, 1), ROAD_LINE_LB_RT),
}
};
public static List<RoadGeometryTemplate> OLD_TOWN_DEFAULT_TEMPLATES = new List<RoadGeometryTemplate>()
{
OLD_TOWN,
OLD_TOWN_DUAL
};
}
}

View file

@ -0,0 +1,359 @@
using FSO.Common.Model;
using FSO.Common.WorldGeometry;
using System;
using System.Collections.Generic;
using System.Linq;
namespace FSO.SimAntics.Model.Routing
{
/// <summary>
/// (copied from VMObstacleSet)
/// A k-d Tree for looking up rectangle intersections
/// Ideally much faster lookups for routing rectangular cover, avatar and object movement. O(log n) vs O(n)
///
/// Concerns:
/// - Tree balancing: a random insert may be the best solution, as algorithms for this can be quite complex.
/// - Should be mutable, as rect cover routing will add new entries. We also may want to add or remove elements from a "static" set.
/// - Tree cloning: wall and object sets would be nice, but for routing ideally we want to add new free-rects to the set dynamically. This means we need to clone the tree.
/// - Return true if ANY found, or return ALL found. First useful for routing, second for checking collision validity.
/// </summary>
public class BaseTriangleSet
{
public VMObstacleSetNode[] Nodes;
protected List<int> FreeList = new List<int>();
protected int PoolInd = 0;
public int Root = -1;
public int Count;
public BaseTriangleSet()
{
InitNodes(64);
}
public BaseTriangleSet(BaseTriangleSet last)
{
if (last.Root != -1)
{
Count = last.Count;
Nodes = (VMObstacleSetNode[])last.Nodes.Clone();
Root = last.Root;
FreeList = last.FreeList.ToList();
PoolInd = last.PoolInd;
}
else
{
InitNodes(64);
}
}
public BaseTriangleSet(IEnumerable<BaseMeshTriangle> obstacles)
{
InitNodes(obstacles.Count());
foreach (var obstacle in obstacles)
Add(obstacle);
}
private void InitNodes(int capacity)
{
if (Nodes == null)
{
Nodes = new VMObstacleSetNode[capacity];
}
else
{
Array.Resize(ref Nodes, capacity);
}
}
private int GetNode()
{
if (FreeList.Count > 0)
{
var free = FreeList.Last();
FreeList.RemoveAt(FreeList.Count - 1);
return free;
}
else
{
return PoolInd++;
}
}
private int GetNode(IntersectRectDimension dir, BaseMeshTriangle rect)
{
var ind = GetNode();
Nodes[ind] = new VMObstacleSetNode()
{
Dimension = dir,
Rect = rect,
LeftChild = -1,
RightChild = -1,
Index = ind,
x1 = rect.x1,
x2 = rect.x2,
y1 = rect.y1,
y2 = rect.y2
};
return ind;
}
private void Reclaim(int index)
{
if (index == PoolInd - 1) PoolInd--;
else FreeList.Add(index);
}
public void Add(BaseMeshTriangle rect)
{
if (PoolInd >= Nodes.Length && FreeList.Count == 0) InitNodes(Nodes.Length * 2);
Count++;
if (Root == -1)
{
Root = GetNode(IntersectRectDimension.Left, rect);
}
else
{
AddAsChild(ref Nodes[Root], rect);
}
}
private void AddAsChild(ref VMObstacleSetNode node, BaseMeshTriangle rect)
{
bool rightSide = false;
switch (node.Dimension)
{
case IntersectRectDimension.Top:
rightSide = rect.y1 > node.Rect.y1; break;
case IntersectRectDimension.Left:
rightSide = rect.x1 > node.Rect.x1; break;
case IntersectRectDimension.Bottom:
rightSide = rect.y2 > node.Rect.y2; break;
case IntersectRectDimension.Right:
rightSide = rect.x2 > node.Rect.x2; break;
}
if (rightSide)
{
if (node.RightChild != -1) AddAsChild(ref Nodes[node.RightChild], rect);
else
{
node.RightChild = GetNode((IntersectRectDimension)(((int)node.Dimension + 1) % 4), rect);
}
}
else
{
if (node.LeftChild != -1) AddAsChild(ref Nodes[node.LeftChild], rect);
else
{
node.LeftChild = GetNode((IntersectRectDimension)(((int)node.Dimension + 1) % 4), rect);
}
}
}
public void RecursiveReAdd(VMObstacleSetNode node)
{
Count--;
Reclaim(node.Index);
Add(node.Rect);
if (node.LeftChild != -1) RecursiveReAdd(Nodes[node.LeftChild]);
if (node.RightChild != -1) RecursiveReAdd(Nodes[node.RightChild]);
}
public bool SearchForIntersect(BaseMeshTriangle rect)
{
if (Root == -1) return false;
else
{
return SearchForIntersect(ref Nodes[Root], rect);
}
}
public bool SearchForIntersect(ref VMObstacleSetNode node, BaseMeshTriangle rect)
{
if (node.Intersects(rect)) return true;
//search in child nodes.
int dontSearch = 0;
switch (node.Dimension)
{
case IntersectRectDimension.Top:
dontSearch = (rect.y2 <= node.y1) ? 2 : 0; break; //if true, do not have to search right (where top greater)
case IntersectRectDimension.Left:
dontSearch = (rect.x2 <= node.x1) ? 2 : 0; break; //if true, do not have to search right (where left greater)
case IntersectRectDimension.Bottom:
dontSearch = (rect.y1 >= node.y2) ? 1 : 0; break; //if true, do not have to search left (where bottom less)
case IntersectRectDimension.Right:
dontSearch = (rect.x1 >= node.x2) ? 1 : 0; break; //if true, do not have to search left (where right less)
}
//may need to search both :'( won't happen often with our small rectangles over large space though.
return ((dontSearch != 1 && node.LeftChild != -1 && SearchForIntersect(ref Nodes[node.LeftChild], rect))
|| (dontSearch != 2 && node.RightChild != -1 && SearchForIntersect(ref Nodes[node.RightChild], rect)));
}
public List<BaseMeshTriangle> AllIntersect(BaseMeshTriangle rect)
{
var result = new List<BaseMeshTriangle>();
if (Root == -1) return result;
else
{
AllIntersect(ref Nodes[Root], rect, result);
return result;
}
}
public void AllIntersect(ref VMObstacleSetNode node, BaseMeshTriangle rect, List<BaseMeshTriangle> result)
{
if (node.Intersects(rect)) result.Add(node.Rect);
//search in child nodes.
int dontSearch = 0;
switch (node.Dimension)
{
case IntersectRectDimension.Top:
dontSearch = (rect.y2 <= node.y1) ? 2 : 0; break; //if true, do not have to search right (where top greater)
case IntersectRectDimension.Left:
dontSearch = (rect.x2 <= node.x1) ? 2 : 0; break; //if true, do not have to search right (where left greater)
case IntersectRectDimension.Bottom:
dontSearch = (rect.y1 >= node.y2) ? 1 : 0; break; //if true, do not have to search left (where bottom less)
case IntersectRectDimension.Right:
dontSearch = (rect.x1 >= node.x2) ? 1 : 0; break; //if true, do not have to search left (where right less)
}
//may need to search both :'( won't happen often with our small rectangles over large space though.
//if (node.LeftChild != -1) AllIntersect(ref Nodes[node.LeftChild], rect, result);
//if (node.RightChild != -1) AllIntersect(ref Nodes[node.RightChild], rect, result);
if (dontSearch != 1 && node.LeftChild != -1) AllIntersect(ref Nodes[node.LeftChild], rect, result);
if (dontSearch != 2 && node.RightChild != -1) AllIntersect(ref Nodes[node.RightChild], rect, result);
}
public List<BaseMeshTriangle> OnEdge(BaseMeshTriangle rect)
{
var result = new List<BaseMeshTriangle>();
if (Root == -1) return result;
else
{
OnEdge(ref Nodes[Root], rect, result);
return result;
}
}
public void OnEdge(ref VMObstacleSetNode node, BaseMeshTriangle rect, List<BaseMeshTriangle> result)
{
if (node.OnEdge(rect)) result.Add(node.Rect);
//search in child nodes.
//binary search to find equal opposing edges.
int dontSearch = 0;
switch (node.Dimension)
{
case IntersectRectDimension.Top:
dontSearch = (rect.y2 < node.y1) ? 2 : 0; break; //if true, do not have to search right (where top greater)
case IntersectRectDimension.Left:
dontSearch = (rect.x2 < node.x1) ? 2 : 0; break; //if true, do not have to search right (where left greater)
case IntersectRectDimension.Bottom:
dontSearch = (rect.y1 > node.y2) ? 1 : 0; break; //if true, do not have to search left (where bottom less)
case IntersectRectDimension.Right:
dontSearch = (rect.x1 > node.x2) ? 1 : 0; break; //if true, do not have to search left (where right less)
}
//may need to search both :'( won't happen often with our small rectangles over large space though.
//if (node.LeftChild != -1) OnEdge(ref Nodes[node.LeftChild], rect, result);
//if (node.RightChild != -1) OnEdge(ref Nodes[node.RightChild], rect, result);
if (dontSearch != 1 && node.LeftChild != -1) OnEdge(ref Nodes[node.LeftChild], rect, result);
if (dontSearch != 2 && node.RightChild != -1) OnEdge(ref Nodes[node.RightChild], rect, result);
}
public static BaseTriangleSet RoughBalanced(List<BaseMeshTriangle> input)
{
//roughly attempts to balance the set.
//...currently by random shuffle. at least it's deterministic?
var rand = new Random(1);
for (int i = 1; i < input.Count; i++)
{
var swap = input[i - 1];
var ind = rand.Next(input.Count - i) + i;
input[i - 1] = input[ind];
input[ind] = swap;
}
return new BaseTriangleSet(input);
}
/*
public bool Delete(VMEntityObstacle rect)
{
if (Root == -1) return false;
else
{
var result = Delete(ref Nodes[Root], rect, ref Nodes[Root]);
if (result) { Count--; }
return result;
}
}
*/
/*
public bool Delete(ref VMObstacleSetNode node, VMEntityObstacle rect, ref VMObstacleSetNode parent)
{
if (rect.Parent == (node.Rect as VMEntityObstacle).Parent)
{
if (parent.Index == node.Index)
{
Root = -1;
}
else
{
if (parent.LeftChild == node.Index) parent.LeftChild = -1;
if (parent.RightChild == node.Index) parent.RightChild = -1;
}
if (node.LeftChild != -1) RecursiveReAdd(Nodes[node.LeftChild]);
if (node.RightChild != -1) RecursiveReAdd(Nodes[node.RightChild]);
Reclaim(node.Index);
return true;
}
//search in child nodes.
//binary search to find equal opposing edges.
bool rightSide = false;
switch (node.Dimension)
{
case IntersectRectDimension.Top:
rightSide = rect.y1 > node.y1; break;
case IntersectRectDimension.Left:
rightSide = rect.x1 > node.x1; break;
case IntersectRectDimension.Bottom:
rightSide = rect.y2 > node.y2; break;
case IntersectRectDimension.Right:
rightSide = rect.x2 > node.x2; break;
}
return ((rightSide && node.RightChild != -1 && Delete(ref Nodes[node.RightChild], rect, ref node))
|| (!rightSide && node.LeftChild != -1 && Delete(ref Nodes[node.LeftChild], rect, ref node)));
}
*/
}
public struct VMObstacleSetNode
{
public int LeftChild;
public int RightChild;
public IntersectRectDimension Dimension;
public BaseMeshTriangle Rect;
public int Index;
public float x1;
public float x2;
public float y1;
public float y2;
public bool Intersects(BaseMeshTriangle other)
{
return !((other.x1 >= x2 || other.x2 <= x1) || (other.y1 >= y2 || other.y2 <= y1));
}
public bool OnEdge(BaseMeshTriangle other)
{
return (x2 == other.x1) || (x1 == other.x2) || (y1 == other.y2) || (y2 == other.y1);
}
}
}