Fixed random garbage produced by iff2html with personglobals.iff due to one of the STR# chunks (animation) not specifying its PairCount.

Also added filesize and md5 statistics and support for CTSS, FAMs, and TTAs chunks.
This commit is contained in:
Fatbag 2012-03-13 18:58:17 -05:00
parent 64fddcf78e
commit b746dbe407
5 changed files with 370 additions and 11 deletions

View file

@ -20,7 +20,10 @@
#include "iff.h"
int iff_parse_chunk(IFFChunk * ChunkInfo, const uint8_t * Buffer){
if(!strcmp(ChunkInfo->Type, "STR#"))
if( !strcmp(ChunkInfo->Type, "STR#") ||
!strcmp(ChunkInfo->Type, "CTSS") ||
!strcmp(ChunkInfo->Type, "FAMs") ||
!strcmp(ChunkInfo->Type, "TTAs") )
return iff_parse_str(ChunkInfo, Buffer);
return 0;
}
@ -28,8 +31,8 @@ int iff_parse_chunk(IFFChunk * ChunkInfo, const uint8_t * Buffer){
int iff_parse_str(IFFChunk * ChunkInfo, const uint8_t * Buffer){
/* No bounds checking yet */
IFF_STR * StringData;
unsigned Size = ChunkInfo->Size - 64;
if(Size < 4)
unsigned Size = ChunkInfo->Size - 76;
if(Size < 2)
return 0;
ChunkInfo->FormattedData = malloc(sizeof(IFF_STR));
if(ChunkInfo->FormattedData == NULL)
@ -38,6 +41,8 @@ int iff_parse_str(IFFChunk * ChunkInfo, const uint8_t * Buffer){
StringData = (IFF_STR*) ChunkInfo->FormattedData;
StringData->Format = read_int16le(Buffer);
Buffer += 2;
if(Size-2 < 2) /* TSO allows this; as seen in the animations chunk in personglobals.iff */
return 1;
switch(StringData->Format){

View file

@ -3,6 +3,7 @@ project(iff2html)
set(IFF2HTML_SOURCES
iff2html.c
md5.c
)
include_directories(${CMAKE_SOURCE_DIR}/Libraries/FileHandler)

View file

@ -18,6 +18,7 @@
#include <stdint.h>
#include <windows.h>
#include <iff/iff.h>
#include "md5.h"
#ifndef min
#define min(x,y) ((x) < (y) ? (x) : (y))
@ -26,12 +27,33 @@
#define max(x,y) ((x) > (y) ? (x) : (y))
#endif
void printsize(FILE * hFile, size_t FileSize){
/* For our purposes, our units are best described in kB and MB */
size_t temp = FileSize;
unsigned position = 1;
if(FileSize >= 1048576)
fprintf(hFile, "%.1f MB (", (float)FileSize/1048576);
else
fprintf(hFile, "%.1f kB (", (float)FileSize/1024);
while((temp/=1000) != 0)
position *= 1000;
fprintf(hFile, "%u", FileSize/position);
FileSize -= (FileSize/position)*position;
while((position/=1000) != 0){
fprintf(hFile, ",%.3u", FileSize/position);
FileSize -= (FileSize/position)*position;
}
fprintf(hFile, " bytes)");
}
int main(int argc, char *argv[]){
unsigned i;
FILE * hFile;
int overwrite = 0;
char *InFile, *OutFile = NULL;
DWORD FileSize;
size_t FileSize;
struct MD5Context md5c;
unsigned char digest[16];
uint8_t * IFFData;
unsigned chunk = 0;
IFFFile * IFFFileInfo;
@ -120,11 +142,16 @@ int main(int argc, char *argv[]){
printf("%sChunk data is corrupt.", "iff2html: error: ");
return -1;
}
/* Calculate the MD5, and then we can free the IFF data because we're done with it */
MD5Init(&md5c);
MD5Update(&md5c, IFFData, FileSize);
MD5Final(digest, &md5c);
free(IFFData);
for(chunk = 1, ChunkNode = IFFFileInfo->FirstChunk; ChunkNode; ChunkNode = ChunkNode->NextChunk, chunk++){
printf("Chunk %u:\n", chunk);
for(chunk = 1, ChunkNode = IFFFileInfo->FirstChunk; ChunkNode; ChunkNode = ChunkNode->NextChunk, chunk++)
iff_parse_chunk(&ChunkNode->Chunk, ChunkNode->Chunk.Data);
}
/****
** Open the output file and write the header
@ -153,7 +180,8 @@ int main(int argc, char *argv[]){
** We're splitting fprintf by line to guarantee compatibility;
** even C99 compilers are only required to support 4096 byte strings in printf()-related functions
*/
fprintf(hFile, "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">\n");
fprintf(hFile,
"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">\n");
fprintf(hFile, "<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\" lang=\"en\" dir=\"ltr\">\n");
fprintf(hFile, "<head>\n");
fprintf(hFile, "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n");
@ -224,6 +252,14 @@ int main(int argc, char *argv[]){
fprintf(hFile, "</head>\n");
fprintf(hFile, "<body>\n");
fprintf(hFile, "<h1>%s</h1>\n", InFile);
fprintf(hFile, "<div id=\"attributes\">\n");
fprintf(hFile, "<div>");
for(i=0; i<16; i++)
fprintf(hFile, "%.2x", digest[i]);
fprintf(hFile, " (md5), ");
printsize(hFile, FileSize);
fprintf(hFile, "</div>\n");
fprintf(hFile, "<div>Dumped by iff2html.</div></div>\n");
fprintf(hFile, "\n");
fprintf(hFile, "<div id=\"toc\"><div><b>Contents</b> &ndash; %u chunks</div>\n", IFFFileInfo->ChunkCount);
fprintf(hFile, "<ul>\n");
@ -245,7 +281,11 @@ int main(int argc, char *argv[]){
if(ChunkNode->Chunk.FormattedData == NULL){
fprintf(hFile, "The contents of this chunk could not be parsed.\n");
}else if(!strcmp(ChunkNode->Chunk.Type, "STR#")){
}else if(!strcmp(ChunkNode->Chunk.Type, "STR#") ||
!strcmp(ChunkNode->Chunk.Type, "CTSS") ||
!strcmp(ChunkNode->Chunk.Type, "FAMs") ||
!strcmp(ChunkNode->Chunk.Type, "TTAs") ){
/****
** STR# parsing
*/
@ -298,10 +338,13 @@ int main(int argc, char *argv[]){
fprintf(hFile, "<tr><td rowspan=\"%u\">%s</td>\n", StringData->LanguageSets[LanguageSet].PairCount,
LanguageStrings[LanguageSet]);
for(PairIndex=1, PairNode = StringData->LanguageSets[LanguageSet].FirstPair; PairNode;
PairNode = PairNode->NextPair, PairIndex++)
PairNode = PairNode->NextPair, PairIndex++){
if(PairIndex != 1)
fprintf(hFile, "<tr>");
fprintf(hFile, "<td>%u</td><td>%s</td><td>%s</td></tr>\n", PairIndex,
(PairNode->Pair.Key) != NULL ? PairNode->Pair.Key : "",
(PairNode->Pair.Value) != NULL ? PairNode->Pair.Value : "");
}
}
fprintf(hFile, "</table>\n");
@ -311,7 +354,8 @@ int main(int argc, char *argv[]){
fprintf(hFile, "</div>\n\n");
}
fprintf(hFile, "<div id=\"footer\">This page was generated by the use of <a href=\"http://www.niotso.org/\">iff2html</a>.\n");
fprintf(hFile,
"<div id=\"footer\">This page was generated by the use of <a href=\"http://www.niotso.org/\">iff2html</a>.\n");
fprintf(hFile, "The content of this page may be subject to copyright by the author(s) of the original iff file.</div>\n");
fprintf(hFile, "</body>\n");
fprintf(hFile, "</html>");

255
Tools/iff2html/md5.c Normal file
View file

@ -0,0 +1,255 @@
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/* Brutally hacked by John Walker back from ANSI C to K&R (no
prototypes) to maintain the tradition that Netfone will compile
with Sun's original "cc". */
#include <memory.h> /* for memcpy() */
#include "md5.h"
#ifndef HIGHFIRST
#define byteReverse(buf, len) /* Nothing */
#else
/*
* Note: this code is harmless on little-endian machines.
*/
void byteReverse(buf, longs)
unsigned char *buf; unsigned longs;
{
uint32 t;
do {
t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(uint32 *) buf = t;
buf += 4;
} while (--longs);
}
#endif
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void MD5Init(ctx)
struct MD5Context *ctx;
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void MD5Update(ctx, buf, len)
struct MD5Context *ctx; unsigned char *buf; unsigned len;
{
uint32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t) {
unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *) ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *) ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void MD5Final(digest, ctx)
unsigned char digest[16]; struct MD5Context *ctx;
{
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *) ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((uint32 *) ctx->in)[14] = ctx->bits[0];
((uint32 *) ctx->in)[15] = ctx->bits[1];
MD5Transform(ctx->buf, (uint32 *) ctx->in);
byteReverse((unsigned char *) ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
void MD5Transform(buf, in)
uint32 buf[4]; uint32 in[16];
{
register uint32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}

54
Tools/iff2html/md5.h Normal file
View file

@ -0,0 +1,54 @@
#ifndef MD5_H
#define MD5_H
/* The following tests optimise behaviour on little-endian
machines, where there is no need to reverse the byte order
of 32 bit words in the MD5 computation. By default,
HIGHFIRST is defined, which indicates we're running on a
big-endian (most significant byte first) machine, on which
the byteReverse function in md5.c must be invoked. However,
byteReverse is coded in such a way that it is an identity
function when run on a little-endian machine, so calling it
on such a platform causes no harm apart from wasting time.
If the platform is known to be little-endian, we speed
things up by undefining HIGHFIRST, which defines
byteReverse as a null macro. Doing things in this manner
insures we work on new platforms regardless of their byte
order. */
#define HIGHFIRST
#ifdef __i386__
#undef HIGHFIRST
#endif
/* On machines where "long" is 64 bits, we need to declare
uint32 as something guaranteed to be 32 bits. */
#ifdef __alpha
typedef unsigned int uint32;
#else
typedef unsigned long uint32;
#endif
struct MD5Context {
uint32 buf[4];
uint32 bits[2];
unsigned char in[64];
};
extern void MD5Init();
extern void MD5Update();
extern void MD5Final();
extern void MD5Transform();
/*
* This is needed to make RSAREF happy on some MS-DOS compilers.
*/
typedef struct MD5Context MD5_CTX;
/* Define CHECK_HARDWARE_PROPERTIES to have main,c verify
byte order and uint32 settings. */
#define CHECK_HARDWARE_PROPERTIES
#endif /* !MD5_H */