mirror of
https://github.com/simtactics/niotso.git
synced 2025-03-28 05:37:45 +00:00
359 lines
13 KiB
C
359 lines
13 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* hash.h
|
|
* header file for postgres hash access method implementation
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* src/include/access/hash.h
|
|
*
|
|
* NOTES
|
|
* modeled after Margo Seltzer's hash implementation for unix.
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#ifndef HASH_H
|
|
#define HASH_H
|
|
|
|
#include "access/genam.h"
|
|
#include "access/itup.h"
|
|
#include "access/sdir.h"
|
|
#include "access/xlog.h"
|
|
#include "fmgr.h"
|
|
#include "storage/lock.h"
|
|
#include "utils/relcache.h"
|
|
|
|
/*
|
|
* Mapping from hash bucket number to physical block number of bucket's
|
|
* starting page. Beware of multiple evaluations of argument!
|
|
*/
|
|
typedef uint32 Bucket;
|
|
|
|
#define BUCKET_TO_BLKNO(metap,B) \
|
|
((BlockNumber) ((B) + ((B) ? (metap)->hashm_spares[_hash_log2((B)+1)-1] : 0)) + 1)
|
|
|
|
/*
|
|
* Special space for hash index pages.
|
|
*
|
|
* hasho_flag tells us which type of page we're looking at. For
|
|
* example, knowing overflow pages from bucket pages is necessary
|
|
* information when you're deleting tuples from a page. If all the
|
|
* tuples are deleted from an overflow page, the overflow is made
|
|
* available to other buckets by calling _hash_freeovflpage(). If all
|
|
* the tuples are deleted from a bucket page, no additional action is
|
|
* necessary.
|
|
*/
|
|
#define LH_UNUSED_PAGE (0)
|
|
#define LH_OVERFLOW_PAGE (1 << 0)
|
|
#define LH_BUCKET_PAGE (1 << 1)
|
|
#define LH_BITMAP_PAGE (1 << 2)
|
|
#define LH_META_PAGE (1 << 3)
|
|
|
|
typedef struct HashPageOpaqueData
|
|
{
|
|
BlockNumber hasho_prevblkno; /* previous ovfl (or bucket) blkno */
|
|
BlockNumber hasho_nextblkno; /* next ovfl blkno */
|
|
Bucket hasho_bucket; /* bucket number this pg belongs to */
|
|
uint16 hasho_flag; /* page type code, see above */
|
|
uint16 hasho_page_id; /* for identification of hash indexes */
|
|
} HashPageOpaqueData;
|
|
|
|
typedef HashPageOpaqueData *HashPageOpaque;
|
|
|
|
/*
|
|
* The page ID is for the convenience of pg_filedump and similar utilities,
|
|
* which otherwise would have a hard time telling pages of different index
|
|
* types apart. It should be the last 2 bytes on the page. This is more or
|
|
* less "free" due to alignment considerations.
|
|
*/
|
|
#define HASHO_PAGE_ID 0xFF80
|
|
|
|
/*
|
|
* HashScanOpaqueData is private state for a hash index scan.
|
|
*/
|
|
typedef struct HashScanOpaqueData
|
|
{
|
|
/* Hash value of the scan key, ie, the hash key we seek */
|
|
uint32 hashso_sk_hash;
|
|
|
|
/*
|
|
* By definition, a hash scan should be examining only one bucket. We
|
|
* record the bucket number here as soon as it is known.
|
|
*/
|
|
Bucket hashso_bucket;
|
|
bool hashso_bucket_valid;
|
|
|
|
/*
|
|
* If we have a share lock on the bucket, we record it here. When
|
|
* hashso_bucket_blkno is zero, we have no such lock.
|
|
*/
|
|
BlockNumber hashso_bucket_blkno;
|
|
|
|
/*
|
|
* We also want to remember which buffer we're currently examining in the
|
|
* scan. We keep the buffer pinned (but not locked) across hashgettuple
|
|
* calls, in order to avoid doing a ReadBuffer() for every tuple in the
|
|
* index.
|
|
*/
|
|
Buffer hashso_curbuf;
|
|
|
|
/* Current position of the scan, as an index TID */
|
|
ItemPointerData hashso_curpos;
|
|
|
|
/* Current position of the scan, as a heap TID */
|
|
ItemPointerData hashso_heappos;
|
|
} HashScanOpaqueData;
|
|
|
|
typedef HashScanOpaqueData *HashScanOpaque;
|
|
|
|
/*
|
|
* Definitions for metapage.
|
|
*/
|
|
|
|
#define HASH_METAPAGE 0 /* metapage is always block 0 */
|
|
|
|
#define HASH_MAGIC 0x6440640
|
|
#define HASH_VERSION 2 /* 2 signifies only hash key value is stored */
|
|
|
|
/*
|
|
* Spares[] holds the number of overflow pages currently allocated at or
|
|
* before a certain splitpoint. For example, if spares[3] = 7 then there are
|
|
* 7 ovflpages before splitpoint 3 (compare BUCKET_TO_BLKNO macro). The
|
|
* value in spares[ovflpoint] increases as overflow pages are added at the
|
|
* end of the index. Once ovflpoint increases (ie, we have actually allocated
|
|
* the bucket pages belonging to that splitpoint) the number of spares at the
|
|
* prior splitpoint cannot change anymore.
|
|
*
|
|
* ovflpages that have been recycled for reuse can be found by looking at
|
|
* bitmaps that are stored within ovflpages dedicated for the purpose.
|
|
* The blknos of these bitmap pages are kept in bitmaps[]; nmaps is the
|
|
* number of currently existing bitmaps.
|
|
*
|
|
* The limitation on the size of spares[] comes from the fact that there's
|
|
* no point in having more than 2^32 buckets with only uint32 hashcodes.
|
|
* There is no particular upper limit on the size of mapp[], other than
|
|
* needing to fit into the metapage. (With 8K block size, 128 bitmaps
|
|
* limit us to 64 Gb of overflow space...)
|
|
*/
|
|
#define HASH_MAX_SPLITPOINTS 32
|
|
#define HASH_MAX_BITMAPS 128
|
|
|
|
typedef struct HashMetaPageData
|
|
{
|
|
uint32 hashm_magic; /* magic no. for hash tables */
|
|
uint32 hashm_version; /* version ID */
|
|
double hashm_ntuples; /* number of tuples stored in the table */
|
|
uint16 hashm_ffactor; /* target fill factor (tuples/bucket) */
|
|
uint16 hashm_bsize; /* index page size (bytes) */
|
|
uint16 hashm_bmsize; /* bitmap array size (bytes) - must be a power
|
|
* of 2 */
|
|
uint16 hashm_bmshift; /* log2(bitmap array size in BITS) */
|
|
uint32 hashm_maxbucket; /* ID of maximum bucket in use */
|
|
uint32 hashm_highmask; /* mask to modulo into entire table */
|
|
uint32 hashm_lowmask; /* mask to modulo into lower half of table */
|
|
uint32 hashm_ovflpoint;/* splitpoint from which ovflpgs being
|
|
* allocated */
|
|
uint32 hashm_firstfree; /* lowest-number free ovflpage (bit#) */
|
|
uint32 hashm_nmaps; /* number of bitmap pages */
|
|
RegProcedure hashm_procid; /* hash procedure id from pg_proc */
|
|
uint32 hashm_spares[HASH_MAX_SPLITPOINTS]; /* spare pages before
|
|
* each splitpoint */
|
|
BlockNumber hashm_mapp[HASH_MAX_BITMAPS]; /* blknos of ovfl bitmaps */
|
|
} HashMetaPageData;
|
|
|
|
typedef HashMetaPageData *HashMetaPage;
|
|
|
|
/*
|
|
* Maximum size of a hash index item (it's okay to have only one per page)
|
|
*/
|
|
#define HashMaxItemSize(page) \
|
|
MAXALIGN_DOWN(PageGetPageSize(page) - \
|
|
SizeOfPageHeaderData - \
|
|
sizeof(ItemIdData) - \
|
|
MAXALIGN(sizeof(HashPageOpaqueData)))
|
|
|
|
#define HASH_MIN_FILLFACTOR 10
|
|
#define HASH_DEFAULT_FILLFACTOR 75
|
|
|
|
/*
|
|
* Constants
|
|
*/
|
|
#define BYTE_TO_BIT 3 /* 2^3 bits/byte */
|
|
#define ALL_SET ((uint32) ~0)
|
|
|
|
/*
|
|
* Bitmap pages do not contain tuples. They do contain the standard
|
|
* page headers and trailers; however, everything in between is a
|
|
* giant bit array. The number of bits that fit on a page obviously
|
|
* depends on the page size and the header/trailer overhead. We require
|
|
* the number of bits per page to be a power of 2.
|
|
*/
|
|
#define BMPGSZ_BYTE(metap) ((metap)->hashm_bmsize)
|
|
#define BMPGSZ_BIT(metap) ((metap)->hashm_bmsize << BYTE_TO_BIT)
|
|
#define BMPG_SHIFT(metap) ((metap)->hashm_bmshift)
|
|
#define BMPG_MASK(metap) (BMPGSZ_BIT(metap) - 1)
|
|
|
|
#define HashPageGetBitmap(page) \
|
|
((uint32 *) PageGetContents(page))
|
|
|
|
#define HashGetMaxBitmapSize(page) \
|
|
(PageGetPageSize((Page) page) - \
|
|
(MAXALIGN(SizeOfPageHeaderData) + MAXALIGN(sizeof(HashPageOpaqueData))))
|
|
|
|
#define HashPageGetMeta(page) \
|
|
((HashMetaPage) PageGetContents(page))
|
|
|
|
/*
|
|
* The number of bits in an ovflpage bitmap word.
|
|
*/
|
|
#define BITS_PER_MAP 32 /* Number of bits in uint32 */
|
|
|
|
/* Given the address of the beginning of a bit map, clear/set the nth bit */
|
|
#define CLRBIT(A, N) ((A)[(N)/BITS_PER_MAP] &= ~(1<<((N)%BITS_PER_MAP)))
|
|
#define SETBIT(A, N) ((A)[(N)/BITS_PER_MAP] |= (1<<((N)%BITS_PER_MAP)))
|
|
#define ISSET(A, N) ((A)[(N)/BITS_PER_MAP] & (1<<((N)%BITS_PER_MAP)))
|
|
|
|
/*
|
|
* page-level and high-level locking modes (see README)
|
|
*/
|
|
#define HASH_READ BUFFER_LOCK_SHARE
|
|
#define HASH_WRITE BUFFER_LOCK_EXCLUSIVE
|
|
#define HASH_NOLOCK (-1)
|
|
|
|
#define HASH_SHARE ShareLock
|
|
#define HASH_EXCLUSIVE ExclusiveLock
|
|
|
|
/*
|
|
* Strategy number. There's only one valid strategy for hashing: equality.
|
|
*/
|
|
#define HTEqualStrategyNumber 1
|
|
#define HTMaxStrategyNumber 1
|
|
|
|
/*
|
|
* When a new operator class is declared, we require that the user supply
|
|
* us with an amproc procudure for hashing a key of the new type.
|
|
* Since we only have one such proc in amproc, it's number 1.
|
|
*/
|
|
#define HASHPROC 1
|
|
|
|
|
|
/* public routines */
|
|
|
|
extern Datum hashbuild(PG_FUNCTION_ARGS);
|
|
extern Datum hashbuildempty(PG_FUNCTION_ARGS);
|
|
extern Datum hashinsert(PG_FUNCTION_ARGS);
|
|
extern Datum hashbeginscan(PG_FUNCTION_ARGS);
|
|
extern Datum hashgettuple(PG_FUNCTION_ARGS);
|
|
extern Datum hashgetbitmap(PG_FUNCTION_ARGS);
|
|
extern Datum hashrescan(PG_FUNCTION_ARGS);
|
|
extern Datum hashendscan(PG_FUNCTION_ARGS);
|
|
extern Datum hashmarkpos(PG_FUNCTION_ARGS);
|
|
extern Datum hashrestrpos(PG_FUNCTION_ARGS);
|
|
extern Datum hashbulkdelete(PG_FUNCTION_ARGS);
|
|
extern Datum hashvacuumcleanup(PG_FUNCTION_ARGS);
|
|
extern Datum hashoptions(PG_FUNCTION_ARGS);
|
|
|
|
/*
|
|
* Datatype-specific hash functions in hashfunc.c.
|
|
*
|
|
* These support both hash indexes and hash joins.
|
|
*
|
|
* NOTE: some of these are also used by catcache operations, without
|
|
* any direct connection to hash indexes. Also, the common hash_any
|
|
* routine is also used by dynahash tables.
|
|
*/
|
|
extern Datum hashchar(PG_FUNCTION_ARGS);
|
|
extern Datum hashint2(PG_FUNCTION_ARGS);
|
|
extern Datum hashint4(PG_FUNCTION_ARGS);
|
|
extern Datum hashint8(PG_FUNCTION_ARGS);
|
|
extern Datum hashoid(PG_FUNCTION_ARGS);
|
|
extern Datum hashenum(PG_FUNCTION_ARGS);
|
|
extern Datum hashfloat4(PG_FUNCTION_ARGS);
|
|
extern Datum hashfloat8(PG_FUNCTION_ARGS);
|
|
extern Datum hashoidvector(PG_FUNCTION_ARGS);
|
|
extern Datum hashint2vector(PG_FUNCTION_ARGS);
|
|
extern Datum hashname(PG_FUNCTION_ARGS);
|
|
extern Datum hashtext(PG_FUNCTION_ARGS);
|
|
extern Datum hashvarlena(PG_FUNCTION_ARGS);
|
|
extern Datum hash_any(register const unsigned char *k, register int keylen);
|
|
extern Datum hash_uint32(uint32 k);
|
|
|
|
/* private routines */
|
|
|
|
/* hashinsert.c */
|
|
extern void _hash_doinsert(Relation rel, IndexTuple itup);
|
|
extern OffsetNumber _hash_pgaddtup(Relation rel, Buffer buf,
|
|
Size itemsize, IndexTuple itup);
|
|
|
|
/* hashovfl.c */
|
|
extern Buffer _hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf);
|
|
extern BlockNumber _hash_freeovflpage(Relation rel, Buffer ovflbuf,
|
|
BufferAccessStrategy bstrategy);
|
|
extern void _hash_initbitmap(Relation rel, HashMetaPage metap,
|
|
BlockNumber blkno, ForkNumber forkNum);
|
|
extern void _hash_squeezebucket(Relation rel,
|
|
Bucket bucket, BlockNumber bucket_blkno,
|
|
BufferAccessStrategy bstrategy);
|
|
|
|
/* hashpage.c */
|
|
extern void _hash_getlock(Relation rel, BlockNumber whichlock, int access);
|
|
extern bool _hash_try_getlock(Relation rel, BlockNumber whichlock, int access);
|
|
extern void _hash_droplock(Relation rel, BlockNumber whichlock, int access);
|
|
extern Buffer _hash_getbuf(Relation rel, BlockNumber blkno,
|
|
int access, int flags);
|
|
extern Buffer _hash_getinitbuf(Relation rel, BlockNumber blkno);
|
|
extern Buffer _hash_getnewbuf(Relation rel, BlockNumber blkno,
|
|
ForkNumber forkNum);
|
|
extern Buffer _hash_getbuf_with_strategy(Relation rel, BlockNumber blkno,
|
|
int access, int flags,
|
|
BufferAccessStrategy bstrategy);
|
|
extern void _hash_relbuf(Relation rel, Buffer buf);
|
|
extern void _hash_dropbuf(Relation rel, Buffer buf);
|
|
extern void _hash_wrtbuf(Relation rel, Buffer buf);
|
|
extern void _hash_chgbufaccess(Relation rel, Buffer buf, int from_access,
|
|
int to_access);
|
|
extern uint32 _hash_metapinit(Relation rel, double num_tuples,
|
|
ForkNumber forkNum);
|
|
extern void _hash_pageinit(Page page, Size size);
|
|
extern void _hash_expandtable(Relation rel, Buffer metabuf);
|
|
|
|
/* hashscan.c */
|
|
extern void _hash_regscan(IndexScanDesc scan);
|
|
extern void _hash_dropscan(IndexScanDesc scan);
|
|
extern bool _hash_has_active_scan(Relation rel, Bucket bucket);
|
|
extern void ReleaseResources_hash(void);
|
|
|
|
/* hashsearch.c */
|
|
extern bool _hash_next(IndexScanDesc scan, ScanDirection dir);
|
|
extern bool _hash_first(IndexScanDesc scan, ScanDirection dir);
|
|
extern bool _hash_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir);
|
|
|
|
/* hashsort.c */
|
|
typedef struct HSpool HSpool; /* opaque struct in hashsort.c */
|
|
|
|
extern HSpool *_h_spoolinit(Relation index, uint32 num_buckets);
|
|
extern void _h_spooldestroy(HSpool *hspool);
|
|
extern void _h_spool(IndexTuple itup, HSpool *hspool);
|
|
extern void _h_indexbuild(HSpool *hspool);
|
|
|
|
/* hashutil.c */
|
|
extern bool _hash_checkqual(IndexScanDesc scan, IndexTuple itup);
|
|
extern uint32 _hash_datum2hashkey(Relation rel, Datum key);
|
|
extern uint32 _hash_datum2hashkey_type(Relation rel, Datum key, Oid keytype);
|
|
extern Bucket _hash_hashkey2bucket(uint32 hashkey, uint32 maxbucket,
|
|
uint32 highmask, uint32 lowmask);
|
|
extern uint32 _hash_log2(uint32 num);
|
|
extern void _hash_checkpage(Relation rel, Buffer buf, int flags);
|
|
extern uint32 _hash_get_indextuple_hashkey(IndexTuple itup);
|
|
extern IndexTuple _hash_form_tuple(Relation index,
|
|
Datum *values, bool *isnull);
|
|
extern OffsetNumber _hash_binsearch(Page page, uint32 hash_value);
|
|
extern OffsetNumber _hash_binsearch_last(Page page, uint32 hash_value);
|
|
|
|
/* hash.c */
|
|
extern void hash_redo(XLogRecPtr lsn, XLogRecord *record);
|
|
extern void hash_desc(StringInfo buf, uint8 xl_info, char *rec);
|
|
|
|
#endif /* HASH_H */
|