mirror of
https://github.com/simtactics/niotso.git
synced 2025-03-19 17:51:22 +00:00
345 lines
10 KiB
C
345 lines
10 KiB
C
/*
|
|
* md5.c
|
|
*
|
|
* Implements the MD5 Message-Digest Algorithm as specified in
|
|
* RFC 1321. This implementation is a simple one, in that it
|
|
* needs every input byte to be buffered before doing any
|
|
* calculations. I do not expect this file to be used for
|
|
* general purpose MD5'ing of large amounts of data, only for
|
|
* generating hashed passwords from limited input.
|
|
*
|
|
* Sverre H. Huseby <sverrehu@online.no>
|
|
*
|
|
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/libpq/md5.c
|
|
*/
|
|
|
|
/* This is intended to be used in both frontend and backend, so use c.h */
|
|
#include "c.h"
|
|
|
|
#include "libpq/md5.h"
|
|
|
|
|
|
/*
|
|
* PRIVATE FUNCTIONS
|
|
*/
|
|
|
|
|
|
/*
|
|
* The returned array is allocated using malloc. the caller should free it
|
|
* when it is no longer needed.
|
|
*/
|
|
static uint8 *
|
|
createPaddedCopyWithLength(uint8 *b, uint32 *l)
|
|
{
|
|
uint8 *ret;
|
|
uint32 q;
|
|
uint32 len,
|
|
newLen448;
|
|
uint32 len_high,
|
|
len_low; /* 64-bit value split into 32-bit sections */
|
|
|
|
len = ((b == NULL) ? 0 : *l);
|
|
newLen448 = len + 64 - (len % 64) - 8;
|
|
if (newLen448 <= len)
|
|
newLen448 += 64;
|
|
|
|
*l = newLen448 + 8;
|
|
if ((ret = (uint8 *) malloc(sizeof(uint8) * *l)) == NULL)
|
|
return NULL;
|
|
|
|
if (b != NULL)
|
|
memcpy(ret, b, sizeof(uint8) * len);
|
|
|
|
/* pad */
|
|
ret[len] = 0x80;
|
|
for (q = len + 1; q < newLen448; q++)
|
|
ret[q] = 0x00;
|
|
|
|
/* append length as a 64 bit bitcount */
|
|
len_low = len;
|
|
/* split into two 32-bit values */
|
|
/* we only look at the bottom 32-bits */
|
|
len_high = len >> 29;
|
|
len_low <<= 3;
|
|
q = newLen448;
|
|
ret[q++] = (len_low & 0xff);
|
|
len_low >>= 8;
|
|
ret[q++] = (len_low & 0xff);
|
|
len_low >>= 8;
|
|
ret[q++] = (len_low & 0xff);
|
|
len_low >>= 8;
|
|
ret[q++] = (len_low & 0xff);
|
|
ret[q++] = (len_high & 0xff);
|
|
len_high >>= 8;
|
|
ret[q++] = (len_high & 0xff);
|
|
len_high >>= 8;
|
|
ret[q++] = (len_high & 0xff);
|
|
len_high >>= 8;
|
|
ret[q] = (len_high & 0xff);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
|
|
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
|
|
#define ROT_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
|
|
|
|
static void
|
|
doTheRounds(uint32 X[16], uint32 state[4])
|
|
{
|
|
uint32 a,
|
|
b,
|
|
c,
|
|
d;
|
|
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
|
|
/* round 1 */
|
|
a = b + ROT_LEFT((a + F(b, c, d) + X[0] + 0xd76aa478), 7); /* 1 */
|
|
d = a + ROT_LEFT((d + F(a, b, c) + X[1] + 0xe8c7b756), 12); /* 2 */
|
|
c = d + ROT_LEFT((c + F(d, a, b) + X[2] + 0x242070db), 17); /* 3 */
|
|
b = c + ROT_LEFT((b + F(c, d, a) + X[3] + 0xc1bdceee), 22); /* 4 */
|
|
a = b + ROT_LEFT((a + F(b, c, d) + X[4] + 0xf57c0faf), 7); /* 5 */
|
|
d = a + ROT_LEFT((d + F(a, b, c) + X[5] + 0x4787c62a), 12); /* 6 */
|
|
c = d + ROT_LEFT((c + F(d, a, b) + X[6] + 0xa8304613), 17); /* 7 */
|
|
b = c + ROT_LEFT((b + F(c, d, a) + X[7] + 0xfd469501), 22); /* 8 */
|
|
a = b + ROT_LEFT((a + F(b, c, d) + X[8] + 0x698098d8), 7); /* 9 */
|
|
d = a + ROT_LEFT((d + F(a, b, c) + X[9] + 0x8b44f7af), 12); /* 10 */
|
|
c = d + ROT_LEFT((c + F(d, a, b) + X[10] + 0xffff5bb1), 17); /* 11 */
|
|
b = c + ROT_LEFT((b + F(c, d, a) + X[11] + 0x895cd7be), 22); /* 12 */
|
|
a = b + ROT_LEFT((a + F(b, c, d) + X[12] + 0x6b901122), 7); /* 13 */
|
|
d = a + ROT_LEFT((d + F(a, b, c) + X[13] + 0xfd987193), 12); /* 14 */
|
|
c = d + ROT_LEFT((c + F(d, a, b) + X[14] + 0xa679438e), 17); /* 15 */
|
|
b = c + ROT_LEFT((b + F(c, d, a) + X[15] + 0x49b40821), 22); /* 16 */
|
|
|
|
/* round 2 */
|
|
a = b + ROT_LEFT((a + G(b, c, d) + X[1] + 0xf61e2562), 5); /* 17 */
|
|
d = a + ROT_LEFT((d + G(a, b, c) + X[6] + 0xc040b340), 9); /* 18 */
|
|
c = d + ROT_LEFT((c + G(d, a, b) + X[11] + 0x265e5a51), 14); /* 19 */
|
|
b = c + ROT_LEFT((b + G(c, d, a) + X[0] + 0xe9b6c7aa), 20); /* 20 */
|
|
a = b + ROT_LEFT((a + G(b, c, d) + X[5] + 0xd62f105d), 5); /* 21 */
|
|
d = a + ROT_LEFT((d + G(a, b, c) + X[10] + 0x02441453), 9); /* 22 */
|
|
c = d + ROT_LEFT((c + G(d, a, b) + X[15] + 0xd8a1e681), 14); /* 23 */
|
|
b = c + ROT_LEFT((b + G(c, d, a) + X[4] + 0xe7d3fbc8), 20); /* 24 */
|
|
a = b + ROT_LEFT((a + G(b, c, d) + X[9] + 0x21e1cde6), 5); /* 25 */
|
|
d = a + ROT_LEFT((d + G(a, b, c) + X[14] + 0xc33707d6), 9); /* 26 */
|
|
c = d + ROT_LEFT((c + G(d, a, b) + X[3] + 0xf4d50d87), 14); /* 27 */
|
|
b = c + ROT_LEFT((b + G(c, d, a) + X[8] + 0x455a14ed), 20); /* 28 */
|
|
a = b + ROT_LEFT((a + G(b, c, d) + X[13] + 0xa9e3e905), 5); /* 29 */
|
|
d = a + ROT_LEFT((d + G(a, b, c) + X[2] + 0xfcefa3f8), 9); /* 30 */
|
|
c = d + ROT_LEFT((c + G(d, a, b) + X[7] + 0x676f02d9), 14); /* 31 */
|
|
b = c + ROT_LEFT((b + G(c, d, a) + X[12] + 0x8d2a4c8a), 20); /* 32 */
|
|
|
|
/* round 3 */
|
|
a = b + ROT_LEFT((a + H(b, c, d) + X[5] + 0xfffa3942), 4); /* 33 */
|
|
d = a + ROT_LEFT((d + H(a, b, c) + X[8] + 0x8771f681), 11); /* 34 */
|
|
c = d + ROT_LEFT((c + H(d, a, b) + X[11] + 0x6d9d6122), 16); /* 35 */
|
|
b = c + ROT_LEFT((b + H(c, d, a) + X[14] + 0xfde5380c), 23); /* 36 */
|
|
a = b + ROT_LEFT((a + H(b, c, d) + X[1] + 0xa4beea44), 4); /* 37 */
|
|
d = a + ROT_LEFT((d + H(a, b, c) + X[4] + 0x4bdecfa9), 11); /* 38 */
|
|
c = d + ROT_LEFT((c + H(d, a, b) + X[7] + 0xf6bb4b60), 16); /* 39 */
|
|
b = c + ROT_LEFT((b + H(c, d, a) + X[10] + 0xbebfbc70), 23); /* 40 */
|
|
a = b + ROT_LEFT((a + H(b, c, d) + X[13] + 0x289b7ec6), 4); /* 41 */
|
|
d = a + ROT_LEFT((d + H(a, b, c) + X[0] + 0xeaa127fa), 11); /* 42 */
|
|
c = d + ROT_LEFT((c + H(d, a, b) + X[3] + 0xd4ef3085), 16); /* 43 */
|
|
b = c + ROT_LEFT((b + H(c, d, a) + X[6] + 0x04881d05), 23); /* 44 */
|
|
a = b + ROT_LEFT((a + H(b, c, d) + X[9] + 0xd9d4d039), 4); /* 45 */
|
|
d = a + ROT_LEFT((d + H(a, b, c) + X[12] + 0xe6db99e5), 11); /* 46 */
|
|
c = d + ROT_LEFT((c + H(d, a, b) + X[15] + 0x1fa27cf8), 16); /* 47 */
|
|
b = c + ROT_LEFT((b + H(c, d, a) + X[2] + 0xc4ac5665), 23); /* 48 */
|
|
|
|
/* round 4 */
|
|
a = b + ROT_LEFT((a + I(b, c, d) + X[0] + 0xf4292244), 6); /* 49 */
|
|
d = a + ROT_LEFT((d + I(a, b, c) + X[7] + 0x432aff97), 10); /* 50 */
|
|
c = d + ROT_LEFT((c + I(d, a, b) + X[14] + 0xab9423a7), 15); /* 51 */
|
|
b = c + ROT_LEFT((b + I(c, d, a) + X[5] + 0xfc93a039), 21); /* 52 */
|
|
a = b + ROT_LEFT((a + I(b, c, d) + X[12] + 0x655b59c3), 6); /* 53 */
|
|
d = a + ROT_LEFT((d + I(a, b, c) + X[3] + 0x8f0ccc92), 10); /* 54 */
|
|
c = d + ROT_LEFT((c + I(d, a, b) + X[10] + 0xffeff47d), 15); /* 55 */
|
|
b = c + ROT_LEFT((b + I(c, d, a) + X[1] + 0x85845dd1), 21); /* 56 */
|
|
a = b + ROT_LEFT((a + I(b, c, d) + X[8] + 0x6fa87e4f), 6); /* 57 */
|
|
d = a + ROT_LEFT((d + I(a, b, c) + X[15] + 0xfe2ce6e0), 10); /* 58 */
|
|
c = d + ROT_LEFT((c + I(d, a, b) + X[6] + 0xa3014314), 15); /* 59 */
|
|
b = c + ROT_LEFT((b + I(c, d, a) + X[13] + 0x4e0811a1), 21); /* 60 */
|
|
a = b + ROT_LEFT((a + I(b, c, d) + X[4] + 0xf7537e82), 6); /* 61 */
|
|
d = a + ROT_LEFT((d + I(a, b, c) + X[11] + 0xbd3af235), 10); /* 62 */
|
|
c = d + ROT_LEFT((c + I(d, a, b) + X[2] + 0x2ad7d2bb), 15); /* 63 */
|
|
b = c + ROT_LEFT((b + I(c, d, a) + X[9] + 0xeb86d391), 21); /* 64 */
|
|
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
}
|
|
|
|
static int
|
|
calculateDigestFromBuffer(uint8 *b, uint32 len, uint8 sum[16])
|
|
{
|
|
register uint32 i,
|
|
j,
|
|
k,
|
|
newI;
|
|
uint32 l;
|
|
uint8 *input;
|
|
register uint32 *wbp;
|
|
uint32 workBuff[16],
|
|
state[4];
|
|
|
|
l = len;
|
|
|
|
state[0] = 0x67452301;
|
|
state[1] = 0xEFCDAB89;
|
|
state[2] = 0x98BADCFE;
|
|
state[3] = 0x10325476;
|
|
|
|
if ((input = createPaddedCopyWithLength(b, &l)) == NULL)
|
|
return 0;
|
|
|
|
for (i = 0;;)
|
|
{
|
|
if ((newI = i + 16 * 4) > l)
|
|
break;
|
|
k = i + 3;
|
|
for (j = 0; j < 16; j++)
|
|
{
|
|
wbp = (workBuff + j);
|
|
*wbp = input[k--];
|
|
*wbp <<= 8;
|
|
*wbp |= input[k--];
|
|
*wbp <<= 8;
|
|
*wbp |= input[k--];
|
|
*wbp <<= 8;
|
|
*wbp |= input[k];
|
|
k += 7;
|
|
}
|
|
doTheRounds(workBuff, state);
|
|
i = newI;
|
|
}
|
|
free(input);
|
|
|
|
j = 0;
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
k = state[i];
|
|
sum[j++] = (k & 0xff);
|
|
k >>= 8;
|
|
sum[j++] = (k & 0xff);
|
|
k >>= 8;
|
|
sum[j++] = (k & 0xff);
|
|
k >>= 8;
|
|
sum[j++] = (k & 0xff);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
bytesToHex(uint8 b[16], char *s)
|
|
{
|
|
static const char *hex = "0123456789abcdef";
|
|
int q,
|
|
w;
|
|
|
|
for (q = 0, w = 0; q < 16; q++)
|
|
{
|
|
s[w++] = hex[(b[q] >> 4) & 0x0F];
|
|
s[w++] = hex[b[q] & 0x0F];
|
|
}
|
|
s[w] = '\0';
|
|
}
|
|
|
|
/*
|
|
* PUBLIC FUNCTIONS
|
|
*/
|
|
|
|
/*
|
|
* pg_md5_hash
|
|
*
|
|
* Calculates the MD5 sum of the bytes in a buffer.
|
|
*
|
|
* SYNOPSIS #include "md5.h"
|
|
* int pg_md5_hash(const void *buff, size_t len, char *hexsum)
|
|
*
|
|
* INPUT buff the buffer containing the bytes that you want
|
|
* the MD5 sum of.
|
|
* len number of bytes in the buffer.
|
|
*
|
|
* OUTPUT hexsum the MD5 sum as a '\0'-terminated string of
|
|
* hexadecimal digits. an MD5 sum is 16 bytes long.
|
|
* each byte is represented by two heaxadecimal
|
|
* characters. you thus need to provide an array
|
|
* of 33 characters, including the trailing '\0'.
|
|
*
|
|
* RETURNS false on failure (out of memory for internal buffers) or
|
|
* true on success.
|
|
*
|
|
* STANDARDS MD5 is described in RFC 1321.
|
|
*
|
|
* AUTHOR Sverre H. Huseby <sverrehu@online.no>
|
|
*
|
|
*/
|
|
bool
|
|
pg_md5_hash(const void *buff, size_t len, char *hexsum)
|
|
{
|
|
uint8 sum[16];
|
|
|
|
if (!calculateDigestFromBuffer((uint8 *) buff, len, sum))
|
|
return false;
|
|
|
|
bytesToHex(sum, hexsum);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
pg_md5_binary(const void *buff, size_t len, void *outbuf)
|
|
{
|
|
if (!calculateDigestFromBuffer((uint8 *) buff, len, outbuf))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* Computes MD5 checksum of "passwd" (a null-terminated string) followed
|
|
* by "salt" (which need not be null-terminated).
|
|
*
|
|
* Output format is "md5" followed by a 32-hex-digit MD5 checksum.
|
|
* Hence, the output buffer "buf" must be at least 36 bytes long.
|
|
*
|
|
* Returns TRUE if okay, FALSE on error (out of memory).
|
|
*/
|
|
bool
|
|
pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len,
|
|
char *buf)
|
|
{
|
|
size_t passwd_len = strlen(passwd);
|
|
|
|
/* +1 here is just to avoid risk of unportable malloc(0) */
|
|
char *crypt_buf = malloc(passwd_len + salt_len + 1);
|
|
bool ret;
|
|
|
|
if (!crypt_buf)
|
|
return false;
|
|
|
|
/*
|
|
* Place salt at the end because it may be known by users trying to crack
|
|
* the MD5 output.
|
|
*/
|
|
memcpy(crypt_buf, passwd, passwd_len);
|
|
memcpy(crypt_buf + passwd_len, salt, salt_len);
|
|
|
|
strcpy(buf, "md5");
|
|
ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3);
|
|
|
|
free(crypt_buf);
|
|
|
|
return ret;
|
|
}
|