{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "source": [ "#r \"nuget:Microsoft.ML\"\n", "#r \"nuget:Microsoft.ML.AutoML\"" ], "outputs": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "source": [ "using Microsoft.ML;\n", "using Microsoft.ML.Data;\n", "using Microsoft.ML.AutoML;\n", "using System.IO;" ], "outputs": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "source": [ "class NeedsInput {\n", " [LoadColumn(0)] public string Action { get; set; }\n", " [LoadColumn(1)] public string Need { get; set; }\n", " [LoadColumn(2,3)] public float[] Threshold { get; set; }\n", "}\n", "\n", "class NeedsOutput {\n", " public int Score { get; set; }\n", "}" ], "outputs": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "source": [ "var dataPath = Path.Combine(Environment.CurrentDirectory, \"data\", \"choice.csv\");" ], "outputs": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "source": [ "var ctx = new MLContext();\n", "var trainingData = ctx.Data.LoadFromTextFile(dataPath, hasHeader: true);\n", "var recSettings = new RecommendationExperimentSettings();" ], "outputs": [] } ], "metadata": { "kernelspec": { "display_name": ".NET (C#)", "language": "C#", "name": ".net-csharp" }, "language_info": { "file_extension": ".cs", "mimetype": "text/x-csharp", "name": "C#", "pygments_lexer": "csharp", "version": "8.0" } }, "nbformat": 4, "nbformat_minor": 4 }