From 10645029e5c597a22919e596f074fe50b3560444 Mon Sep 17 00:00:00 2001 From: David Grigg Date: Mon, 10 Dec 2018 14:47:55 +1100 Subject: [PATCH] [Editorial] for ever -> forever --- src/epub/text/chapter-14.xhtml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/epub/text/chapter-14.xhtml b/src/epub/text/chapter-14.xhtml index 0861ff8..f8ea44a 100644 --- a/src/epub/text/chapter-14.xhtml +++ b/src/epub/text/chapter-14.xhtml @@ -92,7 +92,7 @@

If, on the other hand, it profited the young of an animal to follow habits of life slightly different from those of the parent-form, and consequently to be constructed on a slightly different plan, or if it profited a larva already different from its parent to change still further, then, on the principle of inheritance at corresponding ages, the young or the larvae might be rendered by natural selection more and more different from their parents to any conceivable extent. Differences in the larva might, also, become correlated with successive stages of its development; so that the larva, in the first stage, might come to differ greatly from the larva in the second stage, as is the case with many animals. The adult might also become fitted for sites or habits, in which organs of locomotion or of the senses, etc., would be useless; and in this case the metamorphosis would be retrograde.

From the remarks just made we can see how by changes of structure in the young, in conformity with changed habits of life, together with inheritance at corresponding ages, animals might come to pass through stages of development, perfectly distinct from the primordial condition of their adult progenitors. Most of our best authorities are now convinced that the various larval and pupal stages of insects have thus been acquired through adaptation, and not through inheritance from some ancient form. The curious case of Sitaris⁠—a beetle which passes through certain unusual stages of development⁠—will illustrate how this might occur. The first larval form is described by M. Fabre, as an active, minute insect, furnished with six legs, two long antennae, and four eyes. These larvae are hatched in the nests of bees; and when the male bees emerge from their burrows, in the spring, which they do before the females, the larvae spring on them, and afterwards crawl on to the females while paired with the males. As soon as the female bee deposits her eggs on the surface of the honey stored in the cells, the larvae of the Sitaris leap on the eggs and devour them. Afterwards they undergo a complete change; their eyes disappear; their legs and antennae become rudimentary, and they feed on honey; so that they now more closely resemble the ordinary larvae of insects; ultimately they undergo a further transformation, and finally emerge as the perfect beetle. Now, if an insect, undergoing transformations like those of the Sitaris, were to become the progenitor of a whole new class of insects, the course of development of the new class would be widely different from that of our existing insects; and the first larval stage certainly would not represent the former condition of any adult and ancient form.

On the other hand it is highly probable that with many animals the embryonic or larval stages show us, more or less completely, the condition of the progenitor of the whole group in its adult state. In the great class of the Crustacea, forms wonderfully distinct from each other, namely, suctorial parasites, cirripedes, entomostraca, and even the malacostraca, appear at first as larvae under the nauplius-form; and as these larvae live and feed in the open sea, and are not adapted for any peculiar habits of life, and from other reasons assigned by Fritz Muller, it is probable that at some very remote period an independent adult animal, resembling the Nauplius, existed, and subsequently produced, along several divergent lines of descent, the above-named great Crustacean groups. So again, it is probable, from what we know of the embryos of mammals, birds, fishes and reptiles, that these animals are the modified descendants of some ancient progenitor, which was furnished in its adult state with branchiae, a swim-bladder, four fin-like limbs, and a long tail, all fitted for an aquatic life.

-

As all the organic beings, extinct and recent, which have ever lived, can be arranged within a few great classes; and as all within each class have, according to our theory, been connected together by fine gradations, the best, and, if our collections were nearly perfect, the only possible arrangement, would be genealogical; descent being the hidden bond of connection which naturalists have been seeking under the term of the Natural System. On this view we can understand how it is that, in the eyes of most naturalists, the structure of the embryo is even more important for classification than that of the adult. In two or more groups of animals, however much they may differ from each other in structure and habits in their adult condition, if they pass through closely similar embryonic stages, we may feel assured that they are all descended from one parent-form, and are therefore closely related. Thus, community in embryonic structure reveals community of descent; but dissimilarity in embryonic development does not prove discommunity of descent, for in one of two groups the developmental stages may have been suppressed, or may have been so greatly modified through adaptation to new habits of life as to be no longer recognisable. Even in groups, in which the adults have been modified to an extreme degree, community of origin is often revealed by the structure of the larvae; we have seen, for instance, that cirripedes, though externally so like shellfish, are at once known by their larvae to belong to the great class of crustaceans. As the embryo often shows us more or less plainly the structure of the less modified and ancient progenitor of the group, we can see why ancient and extinct forms so often resemble in their adult state the embryos of existing species of the same class. Agassiz believes this to be a universal law of nature; and we may hope hereafter to see the law proved true. It can, however, be proved true only in those cases in which the ancient state of the progenitor of the group has not been wholly obliterated, either by successive variations having supervened at a very early period of growth, or by such variations having been inherited at an earlier age than that at which they first appeared. It should also be borne in mind, that the law may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long period, or for ever, incapable of demonstration. The law will not strictly hold good in those cases in which an ancient form became adapted in its larval state to some special line of life, and transmitted the same larval state to a whole group of descendants; for such larval state will not resemble any still more ancient form in its adult state.

+

As all the organic beings, extinct and recent, which have ever lived, can be arranged within a few great classes; and as all within each class have, according to our theory, been connected together by fine gradations, the best, and, if our collections were nearly perfect, the only possible arrangement, would be genealogical; descent being the hidden bond of connection which naturalists have been seeking under the term of the Natural System. On this view we can understand how it is that, in the eyes of most naturalists, the structure of the embryo is even more important for classification than that of the adult. In two or more groups of animals, however much they may differ from each other in structure and habits in their adult condition, if they pass through closely similar embryonic stages, we may feel assured that they are all descended from one parent-form, and are therefore closely related. Thus, community in embryonic structure reveals community of descent; but dissimilarity in embryonic development does not prove discommunity of descent, for in one of two groups the developmental stages may have been suppressed, or may have been so greatly modified through adaptation to new habits of life as to be no longer recognisable. Even in groups, in which the adults have been modified to an extreme degree, community of origin is often revealed by the structure of the larvae; we have seen, for instance, that cirripedes, though externally so like shellfish, are at once known by their larvae to belong to the great class of crustaceans. As the embryo often shows us more or less plainly the structure of the less modified and ancient progenitor of the group, we can see why ancient and extinct forms so often resemble in their adult state the embryos of existing species of the same class. Agassiz believes this to be a universal law of nature; and we may hope hereafter to see the law proved true. It can, however, be proved true only in those cases in which the ancient state of the progenitor of the group has not been wholly obliterated, either by successive variations having supervened at a very early period of growth, or by such variations having been inherited at an earlier age than that at which they first appeared. It should also be borne in mind, that the law may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long period, or forever, incapable of demonstration. The law will not strictly hold good in those cases in which an ancient form became adapted in its larval state to some special line of life, and transmitted the same larval state to a whole group of descendants; for such larval state will not resemble any still more ancient form in its adult state.

Thus, as it seems to me, the leading facts in embryology, which are second to none in importance, are explained on the principle of variations in the many descendants from some one ancient progenitor, having appeared at a not very early period of life, and having been inherited at a corresponding period. Embryology rises greatly in interest, when we look at the embryo as a picture, more or less obscured, of the progenitor, either in its adult or larval state, of all the members of the same great class.