Add semantics

This commit is contained in:
Alex Cabal 2020-04-03 13:22:14 -05:00
parent 56ebd3bbb4
commit e3c31457c8
2 changed files with 4 additions and 4 deletions

View file

@ -22,7 +22,7 @@
<p>In regard to the sterility of hybrids in successive generations; though Gartner was enabled to rear some hybrids, carefully guarding them from a cross with either pure parent, for six or seven, and in one case for ten generations, yet he asserts positively that their fertility never increases, but generally decreases greatly and suddenly. With respect to this decrease, it may first be noticed that when any deviation in structure or constitution is common to both parents, this is often transmitted in an augmented degree to the offspring; and both sexual elements in hybrid plants are already affected in some degree. But I believe that their fertility has been diminished in nearly all these cases by an independent cause, namely, by too close interbreeding. I have made so many experiments and collected so many facts, showing on the one hand that an occasional cross with a distinct individual or variety increases the vigour and fertility of the offspring, and on the other hand that very close interbreeding lessens their vigour and fertility, that I cannot doubt the correctness of this conclusion. Hybrids are seldom raised by experimentalists in great numbers; and as the parent-species, or other allied hybrids, generally grow in the same garden, the visits of insects must be carefully prevented during the flowering season: hence hybrids, if left to themselves, will generally be fertilised during each generation by pollen from the same flower; and this would probably be injurious to their fertility, already lessened by their hybrid origin. I am strengthened in this conviction by a remarkable statement repeatedly made by Gartner, namely, that if even the less fertile hybrids be artificially fertilised with hybrid pollen of the same kind, their fertility, notwithstanding the frequent ill effects from manipulation, sometimes decidedly increases, and goes on increasing. Now, in the process of artificial fertilisation, pollen is as often taken by chance (as I know from my own experience) from the anthers of another flower, as from the anthers of the flower itself which is to be fertilised; so that a cross between two flowers, though probably often on the same plant, would be thus effected. Moreover, whenever complicated experiments are in progress, so careful an observer as Gartner would have castrated his hybrids, and this would have insured in each generation a cross with pollen from a distinct flower, either from the same plant or from another plant of the same hybrid nature. And thus, the strange fact of an increase of fertility in the successive generations of <em>artificially fertilised</em> hybrids, in contrast with those spontaneously self-fertilised, may, as I believe, be accounted for by too close interbreeding having been avoided.</p>
<p>Now let us turn to the results arrived at by a third most experienced hybridiser, namely, the <abbr>Hon.</abbr> and <abbr>Rev.</abbr> <abbr class="name">W.</abbr> Herbert. He is as emphatic in his conclusion that some hybrids are perfectly fertile—as fertile as the pure parent-species—as are Kolreuter and Gartner that some degree of sterility between distinct species is a universal law of nature. He experimented on some of the very same species as did Gartner. The difference in their results may, I think, be in part accounted for by Herberts great horticultural skill, and by his having hothouses at his command. Of his many important statements I will here give only a single one as an example, namely, that “every ovule in a pod of <i epub:type="z3998:taxonomy">Crinum capense</i> fertilised by <i epub:type="z3998:taxonomy"><abbr>C.</abbr> revolutum</i> produced a plant, which I never saw to occur in a case of its natural fecundation.” So that here we have perfect, or even more than commonly perfect fertility, in a first cross between two distinct species.</p>
<p>This case of the <i epub:type="z3998:taxonomy">Crinum</i> leads me to refer to a singular fact, namely, that individual plants of certain species of <i epub:type="z3998:taxonomy">Lobelia</i>, <i epub:type="z3998:taxonomy">Verbascum</i> and <i epub:type="z3998:taxonomy">Passiflora</i>, can easily be fertilised by the pollen from a distinct species, but not by pollen from the same plant, though this pollen can be proved to be perfectly sound by fertilising other plants or species. In the genus <i epub:type="z3998:taxonomy">Hippeastrum</i>, in Corydalis as shown by Professor Hildebrand, in various orchids as shown by <abbr>Mr.</abbr> Scott and Fritz Muller, all the individuals are in this peculiar condition. So that with some species, certain abnormal individuals, and in other species all the individuals, can actually be hybridised much more readily than they can be fertilised by pollen from the same individual plant! To give one instance, a bulb of <i epub:type="z3998:taxonomy">Hippeastrum aulicum</i> produced four flowers; three were fertilised by Herbert with their own pollen, and the fourth was subsequently fertilised by the pollen of a compound hybrid descended from three distinct species: the result was that “the ovaries of the three first flowers soon ceased to grow, and after a few days perished entirely, whereas the pod impregnated by the pollen of the hybrid made vigorous growth and rapid progress to maturity, and bore good seed, which vegetated freely.” <abbr>Mr.</abbr> Herbert tried similar experiments during many years, and always with the same result. These cases serve to show on what slight and mysterious causes the lesser or greater fertility of a species sometimes depends.</p>
<p>The practical experiments of horticulturists, though not made with scientific precision, deserve some notice. It is notorious in how complicated a manner the species of <i epub:type="z3998:taxonomy">Pelargonium</i>, <i epub:type="z3998:taxonomy">Fuchsia</i>, <i epub:type="z3998:taxonomy">Calceolaria</i>, <i epub:type="z3998:taxonomy">Petunia</i>, <i epub:type="z3998:taxonomy">Rhododendron</i>, <abbr>etc.</abbr>, have been crossed, yet many of these hybrids seed freely. For instance, Herbert asserts that a hybrid from <i epub:type="z3998:taxonomy">Calceolaria integrifolia</i> and <i epub:type="z3998:taxonomy">plantaginea</i>, species most widely dissimilar in general habit, “reproduces itself as perfectly as if it had been a natural species from the mountains of Chile.” I have taken some pains to ascertain the degree of fertility of some of the complex crosses of rhododendrons, and I am assured that many of them are perfectly fertile. <abbr>Mr.</abbr> <abbr class="name">C.</abbr> Noble, for instance, informs me that he raises stocks for grafting from a hybrid between <i epub:type="z3998:taxonomy">Rhod. ponticum</i> and <i epub:type="z3998:taxonomy">catawbiense</i>, and that this hybrid “seeds as freely as it is possible to imagine.” Had hybrids, when fairly treated, always gone on decreasing in fertility in each successive generation, as Gartner believed to be the case, the fact would have been notorious to nurserymen. Horticulturists raise large beds of the same hybrid, and such alone are fairly treated, for by insect agency the several individuals are allowed to cross freely with each other, and the injurious influence of close interbreeding is thus prevented. Anyone may readily convince himself of the efficiency of insect agency by examining the flowers of the more sterile kinds of hybrid rhododendrons, which produce no pollen, for he will find on their stigmas plenty of pollen brought from other flowers.</p>
<p>The practical experiments of horticulturists, though not made with scientific precision, deserve some notice. It is notorious in how complicated a manner the species of <i epub:type="z3998:taxonomy">Pelargonium</i>, <i epub:type="z3998:taxonomy">Fuchsia</i>, <i epub:type="z3998:taxonomy">Calceolaria</i>, <i epub:type="z3998:taxonomy">Petunia</i>, <i epub:type="z3998:taxonomy">Rhododendron</i>, <abbr>etc.</abbr>, have been crossed, yet many of these hybrids seed freely. For instance, Herbert asserts that a hybrid from <i epub:type="z3998:taxonomy">Calceolaria integrifolia</i> and <i epub:type="z3998:taxonomy">plantaginea</i>, species most widely dissimilar in general habit, “reproduces itself as perfectly as if it had been a natural species from the mountains of Chile.” I have taken some pains to ascertain the degree of fertility of some of the complex crosses of rhododendrons, and I am assured that many of them are perfectly fertile. <abbr>Mr.</abbr> <abbr class="name">C.</abbr> Noble, for instance, informs me that he raises stocks for grafting from a hybrid between <i epub:type="z3998:taxonomy"><abbr>Rhod.</abbr> ponticum</i> and <i epub:type="z3998:taxonomy">catawbiense</i>, and that this hybrid “seeds as freely as it is possible to imagine.” Had hybrids, when fairly treated, always gone on decreasing in fertility in each successive generation, as Gartner believed to be the case, the fact would have been notorious to nurserymen. Horticulturists raise large beds of the same hybrid, and such alone are fairly treated, for by insect agency the several individuals are allowed to cross freely with each other, and the injurious influence of close interbreeding is thus prevented. Anyone may readily convince himself of the efficiency of insect agency by examining the flowers of the more sterile kinds of hybrid rhododendrons, which produce no pollen, for he will find on their stigmas plenty of pollen brought from other flowers.</p>
<p>In regard to animals, much fewer experiments have been carefully tried than with plants. If our systematic arrangements can be trusted, that is, if the genera of animals are as distinct from each other as are the genera of plants, then we may infer that animals more widely distinct in the scale of nature can be crossed more easily than in the case of plants; but the hybrids themselves are, I think, more sterile. It should, however, be borne in mind that, owing to few animals breeding freely under confinement, few experiments have been fairly tried: for instance, the canary-bird has been crossed with nine distinct species of finches, but, as not one of these breeds freely in confinement, we have no right to expect that the first crosses between them and the canary, or that their hybrids, should be perfectly fertile. Again, with respect to the fertility in successive generations of the more fertile hybrid animals, I hardly know of an instance in which two families of the same hybrid have been raised at the same time from different parents, so as to avoid the ill effects of close interbreeding. On the contrary, brothers and sisters have usually been crossed in each successive generation, in opposition to the constantly repeated admonition of every breeder. And in this case, it is not at all surprising that the inherent sterility in the hybrids should have gone on increasing.</p>
<p>Although I know of hardly any thoroughly well-authenticated cases of perfectly fertile hybrid animals, I have reason to believe that the hybrids from <i epub:type="z3998:taxonomy">Cervulus vaginalis</i> and <i epub:type="z3998:taxonomy">Reevesii</i>, and from <i epub:type="z3998:taxonomy">Phasianus colchicus</i> with <i epub:type="z3998:taxonomy"><abbr>P.</abbr> torquatus</i>, are perfectly fertile. <abbr class="name">M.</abbr> Quatrefages states that the hybrids from two moths (<i epub:type="z3998:taxonomy">Bombyx cynthia</i> and <i epub:type="z3998:taxonomy">arrindia</i>) were proved in Paris to be fertile inter se for eight generations. It has lately been asserted that two such distinct species as the hare and rabbit, when they can be got to breed together, produce offspring, which are highly fertile when crossed with one of the parent-species. The hybrids from the common and Chinese geese (<i epub:type="z3998:taxonomy"><abbr>A.</abbr> cygnoides</i>), species which are so different that they are generally ranked in distinct genera, have often bred in this country with either pure parent, and in one single instance they have bred inter se. This was effected by <abbr>Mr.</abbr> Eyton, who raised two hybrids from the same parents, but from different hatches; and from these two birds he raised no less than eight hybrids (grandchildren of the pure geese) from one nest. In India, however, these crossbred geese must be far more fertile; for I am assured by two eminently capable judges, namely <abbr>Mr.</abbr> Blyth and Captain Hutton, that whole flocks of these crossed geese are kept in various parts of the country; and as they are kept for profit, where neither pure parent-species exists, they must certainly be highly or perfectly fertile.</p>
<p>With our domesticated animals, the various races when crossed together are quite fertile; yet in many cases they are descended from two or more wild species. From this fact we must conclude either that the aboriginal parent-species at first produced perfectly fertile hybrids, or that the hybrids subsequently reared under domestication became quite fertile. This latter alternative, which was first propounded by Pallas, seems by far the most probable, and can, indeed, hardly be doubted. It is, for instance, almost certain that our dogs are descended from several wild stocks; yet, with perhaps the exception of certain indigenous domestic dogs of South America, all are quite fertile together; but analogy makes me greatly doubt, whether the several aboriginal species would at first have freely bred together and have produced quite fertile hybrids. So again I have lately acquired decisive evidence that the crossed offspring from the Indian humped and common cattle are inter se perfectly fertile; and from the observations by Rutimeyer on their important osteological differences, as well as from those by <abbr>Mr.</abbr> Blyth on their differences in habits, voice, constitution, <abbr>etc.</abbr>, these two forms must be regarded as good and distinct species. The same remarks may be extended to the two chief races of the pig. We must, therefore, either give up the belief of the universal sterility of species when crossed; or we must look at this sterility in animals, not as an indelible characteristic, but as one capable of being removed by domestication.</p>

View file

@ -9,7 +9,7 @@
<section id="preamble" epub:type="preamble">
<h2 epub:type="title">An Historical Sketch of the Progress of Opinion on the Origin of Species, Previously to the Publication of the First Edition of This Work</h2>
<p>I will here give a brief sketch of the progress of opinion on the Origin of Species. Until recently the great majority of naturalists believed that species were immutable productions, and had been separately created. This view has been ably maintained by many authors. Some few naturalists, on the other hand, have believed that species undergo modification, and that the existing forms of life are the descendants by true generation of preexisting forms. Passing over allusions to the subject in the classical writers,<a href="endnotes.xhtml#note-1" id="noteref-1" epub:type="noteref">1</a> the first author who in modern times has treated it in a scientific spirit was Buffon. But as his opinions fluctuated greatly at different periods, and as he does not enter on the causes or means of the transformation of species, I need not here enter on details.</p>
<p>Lamarck was the first man whose conclusions on the subject excited much attention. This justly celebrated naturalist first published his views in <time datetime="1801">1801</time>; he much enlarged them in <time datetime="1809">1809</time> in his “Philosophie Zoologique,” and subsequently, <time datetime="1815">1815</time>, in the Introduction to his <i epub:type="se:name.publication.book">Hist. Nat. des Animaux sans Vertebres</i>. In these works he upholds the doctrine that all species, including man, are descended from other species. He first did the eminent service of arousing attention to the probability of all change in the organic, as well as in the inorganic world, being the result of law, and not of miraculous interposition. Lamarck seems to have been chiefly led to his conclusion on the gradual change of species, by the difficulty of distinguishing species and varieties, by the almost perfect gradation of forms in certain groups, and by the analogy of domestic productions. With respect to the means of modification, he attributed something to the direct action of the physical conditions of life, something to the crossing of already existing forms, and much to use and disuse, that is, to the effects of habit. To this latter agency he seems to attribute all the beautiful adaptations in nature; such as the long neck of the giraffe for browsing on the branches of trees. But he likewise believed in a law of progressive development, and as all the forms of life thus tend to progress, in order to account for the existence at the present day of simple productions, he maintains that such forms are now spontaneously generated.<a href="endnotes.xhtml#note-2" id="noteref-2" epub:type="noteref">2</a></p>
<p>Lamarck was the first man whose conclusions on the subject excited much attention. This justly celebrated naturalist first published his views in <time datetime="1801">1801</time>; he much enlarged them in <time datetime="1809">1809</time> in his “Philosophie Zoologique,” and subsequently, <time datetime="1815">1815</time>, in the Introduction to his <i epub:type="se:name.publication.book"><abbr>Hist.</abbr> <abbr>Nat.</abbr> des Animaux sans Vertebres</i>. In these works he upholds the doctrine that all species, including man, are descended from other species. He first did the eminent service of arousing attention to the probability of all change in the organic, as well as in the inorganic world, being the result of law, and not of miraculous interposition. Lamarck seems to have been chiefly led to his conclusion on the gradual change of species, by the difficulty of distinguishing species and varieties, by the almost perfect gradation of forms in certain groups, and by the analogy of domestic productions. With respect to the means of modification, he attributed something to the direct action of the physical conditions of life, something to the crossing of already existing forms, and much to use and disuse, that is, to the effects of habit. To this latter agency he seems to attribute all the beautiful adaptations in nature; such as the long neck of the giraffe for browsing on the branches of trees. But he likewise believed in a law of progressive development, and as all the forms of life thus tend to progress, in order to account for the existence at the present day of simple productions, he maintains that such forms are now spontaneously generated.<a href="endnotes.xhtml#note-2" id="noteref-2" epub:type="noteref">2</a></p>
<p>Geoffroy Saint-Hilaire, as is stated in his <i epub:type="se:name.publication.book">Life</i>, written by his son, suspected, as early as <time datetime="1795">1795</time>, that what we call species are various degenerations of the same type. It was not until <time datetime="1828">1828</time> that he published his conviction that the same forms have not been perpetuated since the origin of all things. Geoffroy seems to have relied chiefly on the conditions of life, or the <i xml:lang="fr">monde ambiant</i> as the cause of change. He was cautious in drawing conclusions, and did not believe that existing species are now undergoing modification; and, as his son adds, “<i xml:lang="fr">Cest donc un problème à réserver entièrement à lavenir, supposé même que lavenir doive avoir prise sur lui.</i></p>
<p>In <time datetime="1813">1813</time> <abbr>Dr.</abbr> <abbr class="name">W. C.</abbr> Wells read before the Royal Society “An Account of a White Female, part of whose skin resembles that of a Negro;” but his paper was not published until his famous <i epub:type="se:name.publication.book">Two Essays upon Dew and Single Vision</i> appeared in <time datetime="1818">1818</time>. In this paper he distinctly recognises the principle of natural selection, and this is the first recognition which has been indicated; but he applies it only to the races of man, and to certain characters alone. After remarking that negroes and mulattoes enjoy an immunity from certain tropical diseases, he observes, firstly, that all animals tend to vary in some degree, and, secondly, that agriculturists improve their domesticated animals by selection; and then, he adds, but what is done in this latter case “by art, seems to be done with equal efficacy, though more slowly, by nature, in the formation of varieties of mankind, fitted for the country which they inhabit. Of the accidental varieties of man, which would occur among the first few and scattered inhabitants of the middle regions of Africa, some one would be better fitted than others to bear the diseases of the country. This race would consequently multiply, while the others would decrease; not only from their inability to sustain the attacks of disease, but from their incapacity of contending with their more vigorous neighbours. The colour of this vigorous race I take for granted, from what has been already said, would be dark. But the same disposition to form varieties still existing, a darker and a darker race would in the course of time occur: and as the darkest would be the best fitted for the climate, this would at length become the most prevalent, if not the only race, in the particular country in which it had originated.” He then extends these same views to the white inhabitants of colder climates. I am indebted to <abbr>Mr.</abbr> Rowley, of the United States, for having called my attention, through <abbr>Mr.</abbr> Brace, to the above passage of <abbr>Dr.</abbr> Wells work.</p>
<p>The <abbr>Hon.</abbr> and <abbr>Rev.</abbr> <abbr class="name">W.</abbr> Herbert, afterward Dean of Manchester, in the fourth volume of the <i epub:type="se:name.publication.journal">Horticultural Transactions</i>, <time datetime="1822">1822</time>, and in his work on the <i epub:type="se:name.publication.book">Amaryllidaceae</i> (<time datetime="1837">1837</time>, pages 19, 339), declares that “horticultural experiments have established, beyond the possibility of refutation, that botanical species are only a higher and more permanent class of varieties.” He extends the same view to animals. The dean believes that single species of each genus were created in an originally highly plastic condition, and that these have produced, chiefly by inter-crossing, but likewise by variation, all our existing species.</p>
@ -21,13 +21,13 @@
<p>The <i epub:type="se:name.publication.book">Vestiges of Creation</i> appeared in <time datetime="1844">1844</time>. In the tenth and much improved edition (<time datetime="1853">1853</time>) the anonymous author says (page 155): “The proposition determined on after much consideration is, that the several series of animated beings, from the simplest and oldest up to the highest and most recent, are, under the providence of God, the results, <em>first</em>, of an impulse which has been imparted to the forms of life, advancing them, in definite times, by generation, through grades of organisation terminating in the highest dicotyledons and vertebrata, these grades being few in number, and generally marked by intervals of organic character, which we find to be a practical difficulty in ascertaining affinities; <em>second</em>, of another impulse connected with the vital forces, tending, in the course of generations, to modify organic structures in accordance with external circumstances, as food, the nature of the habitat, and the meteoric agencies, these being the adaptations of the natural theologian.” The author apparently believes that organisation progresses by sudden leaps, but that the effects produced by the conditions of life are gradual. He argues with much force on general grounds that species are not immutable productions. But I cannot see how the two supposed “impulses” account in a scientific sense for the numerous and beautiful coadaptations which we see throughout nature; I cannot see that we thus gain any insight how, for instance, a woodpecker has become adapted to its peculiar habits of life. The work, from its powerful and brilliant style, though displaying in the early editions little accurate knowledge and a great want of scientific caution, immediately had a very wide circulation. In my opinion it has done excellent service in this country in calling attention to the subject, in removing prejudice, and in thus preparing the ground for the reception of analogous views.</p>
<p>In <time datetime="1846">1846</time> the veteran geologist <abbr class="name">M. J.</abbr> dOmalius dHalloy published in an excellent though short paper (<i epub:type="se:name.publication.journal">Bulletins de lAcad. Roy. Bruxelles</i>, tom. <span epub:type="z3998:roman">xiii</span>, page 581) his opinion that it is more probable that new species have been produced by descent with modification than that they have been separately created: the author first promulgated this opinion in <time datetime="1831">1831</time>.</p>
<p>Professor Owen, in <time datetime="1849">1849</time> (<i epub:type="se:name.publication.book">Nature of Limbs</i>, page 86), wrote as follows: “The archetypal idea was manifested in the flesh under diverse such modifications, upon this planet, long prior to the existence of those animal species that actually exemplify it. To what natural laws or secondary causes the orderly succession and progression of such organic phenomena may have been committed, we, as yet, are ignorant.” In his address to the British Association, in <time datetime="1858">1858</time>, he speaks (page li) of “the axiom of the continuous operation of creative power, or of the ordained becoming of living things.” Further on (page xc), after referring to geographical distribution, he adds, “These phenomena shake our confidence in the conclusion that the Apteryx of New Zealand and the Red Grouse of England were distinct creations in and for those islands respectively. Always, also, it may be well to bear in mind that by the word creation the zoologist means a process he knows not what.’ ” He amplifies this idea by adding that when such cases as that of the Red Grouse are “enumerated by the zoologist as evidence of distinct creation of the bird in and for such islands, he chiefly expresses that he knows not how the Red Grouse came to be there, and there exclusively; signifying also, by this mode of expressing such ignorance, his belief that both the bird and the islands owed their origin to a great first Creative Cause.” If we interpret these sentences given in the same address, one by the other, it appears that this eminent philosopher felt in <time datetime="1858">1858</time> his confidence shaken that the Apteryx and the Red Grouse first appeared in their respective homes “he knew not how,” or by some process “he knew not what.”</p>
<p>This address was delivered after the papers by <abbr>Mr.</abbr> Wallace and myself on the Origin of Species, presently to be referred to, had been read before the Linnean Society. When the first edition of this work was published, I was so completely deceived, as were many others, by such expressions as “the continuous operation of creative power,” that I included Professor Owen with other palaeontologists as being firmly convinced of the immutability of species; but it appears (<i epub:type="se:name.publication.book">Anat. of Vertebrates</i>, vol. <span epub:type="z3998:roman">iii</span>, page 796) that this was on my part a preposterous error. In the last edition of this work I inferred, and the inference still seems to me perfectly just, from a passage beginning with the words “no doubt the type-form,” <abbr>etc.</abbr>(Ibid., vol. i, page <span epub:type="z3998:roman">xxxv</span>), that Professor Owen admitted that natural selection may have done something in the formation of a new species; but this it appears (Ibid., vol. <span epub:type="z3998:roman">iii</span> page 798) is inaccurate and without evidence. I also gave some extracts from a correspondence between Professor Owen and the editor of the <i epub:type="se:name.publication.journal">London Review</i>, from which it appeared manifest to the editor as well as to myself, that Professor Owen claimed to have promulgated the theory of natural selection before I had done so; and I expressed my surprise and satisfaction at this announcement; but as far as it is possible to understand certain recently published passages (Ibid., vol. <span epub:type="z3998:roman">iii</span> page 798) I have either partially or wholly again fallen into error. It is consolatory to me that others find Professor Owens controversial writings as difficult to understand and to reconcile with each other, as I do. As far as the mere enunciation of the principle of natural selection is concerned, it is quite immaterial whether or not Professor Owen preceded me, for both of us, as shown in this historical sketch, were long ago preceded by <abbr>Dr.</abbr> Wells and <abbr>Mr.</abbr> Matthews.</p>
<p>This address was delivered after the papers by <abbr>Mr.</abbr> Wallace and myself on the Origin of Species, presently to be referred to, had been read before the Linnean Society. When the first edition of this work was published, I was so completely deceived, as were many others, by such expressions as “the continuous operation of creative power,” that I included Professor Owen with other palaeontologists as being firmly convinced of the immutability of species; but it appears (<i epub:type="se:name.publication.book"><abbr>Anat.</abbr> of Vertebrates</i>, vol. <span epub:type="z3998:roman">iii</span>, page 796) that this was on my part a preposterous error. In the last edition of this work I inferred, and the inference still seems to me perfectly just, from a passage beginning with the words “no doubt the type-form,” <abbr>etc.</abbr>(Ibid., vol. i, page <span epub:type="z3998:roman">xxxv</span>), that Professor Owen admitted that natural selection may have done something in the formation of a new species; but this it appears (Ibid., vol. <span epub:type="z3998:roman">iii</span> page 798) is inaccurate and without evidence. I also gave some extracts from a correspondence between Professor Owen and the editor of the <i epub:type="se:name.publication.journal">London Review</i>, from which it appeared manifest to the editor as well as to myself, that Professor Owen claimed to have promulgated the theory of natural selection before I had done so; and I expressed my surprise and satisfaction at this announcement; but as far as it is possible to understand certain recently published passages (Ibid., vol. <span epub:type="z3998:roman">iii</span> page 798) I have either partially or wholly again fallen into error. It is consolatory to me that others find Professor Owens controversial writings as difficult to understand and to reconcile with each other, as I do. As far as the mere enunciation of the principle of natural selection is concerned, it is quite immaterial whether or not Professor Owen preceded me, for both of us, as shown in this historical sketch, were long ago preceded by <abbr>Dr.</abbr> Wells and <abbr>Mr.</abbr> Matthews.</p>
<p><abbr>M.</abbr> Isidore Geoffroy Saint-Hilaire, in his lectures delivered in <time datetime="1850">1850</time> (of which a Resume appeared in the <i epub:type="se:name.publication.journal">Revue et <abbr>Mag.</abbr> de <abbr>Zoolog.</abbr></i>, <time datetime="1851-01"><abbr>Jan.</abbr>, 1851</time>), briefly gives his reason for believing that specific characters “<i xml:lang="fr">sont fixés, pour chaque espèce, tant quelle se perpétue au milieu des mêmes circonstances: ils se modifient, si les circonstances ambiantes viennent à changer. En résumé, <em>Lobservation</em> des animaux sauvages démontre déjà la variabilité <em>limitée</em> des espèces. Les <em>expériences</em> sur les animaux sauvages devenus domestiques, et sur les animaux domestiques redevenus sauvages, la démontrent plus clairment encore. Ces mêmes expériences prouvent, de plus, que les différences produites peuvent etre de <em>valeur générique</em>.</i>” In his <i epub:type="se:name.publication.book" xml:lang="fr"><abbr>Hist.</abbr> <abbr>Nat.</abbr> Générale</i> (tom. <span epub:type="z3998:roman">ii</span>, page 430, <time datetime="1859">1859</time>) he amplifies analogous conclusions.</p>
<p>From a circular lately issued it appears that <abbr>Dr.</abbr> Freke, in <time datetime="1851">1851</time> (<i epub:type="se:name.publication.journal">Dublin Medical Press</i>, page 322), propounded the doctrine that all organic beings have descended from one primordial form. His grounds of belief and treatment of the subject are wholly different from mine; but as <abbr>Dr.</abbr> Freke has now (<time datetime="1861">1861</time>) published his essay on the <i epub:type="se:name.publication.book">Origin of Species by means of Organic Affinity</i>, the difficult attempt to give any idea of his views would be superfluous on my part.</p>
<p><abbr>Mr.</abbr> Herbert Spencer, in an essay (originally published in the <i epub:type="se:name.publication.newspaper">Leader</i>, <time datetime="1852-03">March, 1852</time>, and republished in his <i epub:type="se:name.publication.book">Essays</i>, in <time datetime="1858">1858</time>), has contrasted the theories of the creation and the development of organic beings with remarkable skill and force. He argues from the analogy of domestic productions, from the changes which the embryos of many species undergo, from the difficulty of distinguishing species and varieties, and from the principle of general gradation, that species have been modified; and he attributes the modification to the change of circumstances. The author (<time datetime="1855">1855</time>) has also treated psychology on the principle of the necessary acquirement of each mental power and capacity by gradation.</p>
<p>In <time datetime="1852">1852</time> <abbr class="name">M.</abbr> Naudin, a distinguished botanist, expressly stated, in an admirable paper on the Origin of Species (<i epub:type="se:name.publication.journal">Revue Horticole</i>, page 102; since partly republished in the <i epub:type="se:name.publication.journal">Nouvelles Archives du Museum</i>, tom. i, page 171), his belief that species are formed in an analogous manner as varieties are under cultivation; and the latter process he attributes to mans power of selection. But he does not show how selection acts under nature. He believes, like Dean Herbert, that species, when nascent, were more plastic than at present. He lays weight on what he calls the principle of finality, “<i xml:lang="fr">puissance mystérieuse, indéterminée; fatalité pour les uns; pour les autres volonté providentielle, dont laction incessante sur les êtres vivantes détermine, à toutes les époques de lexistence du monde, la forme, le volume, et la dureé de chacun deux, en raison de sa destinée dans lordre de choses dont il fait partie. Cest cette puissance qui harmonise chaque membre à lensemble, en lappropriant à la fonction quil doit remplir dans lorganisme général de la nature, fonction qui est pour lui sa raison dêtre.</i><a href="endnotes.xhtml#note-3" id="noteref-3" epub:type="noteref">3</a></p>
<p>In <time datetime="1853">1853</time> a celebrated geologist, Count Keyserling (<i epub:type="se:name.publication.journal">Bulletin de la <abbr>Soc.</abbr> <abbr>Géolog.</abbr></i>, 2nd <abbr>Ser.</abbr>, <abbr>tom.</abbr> <span epub:type="z3998:roman">x</span>, page 357), suggested that as new diseases, supposed to have been caused by some miasma have arisen and spread over the world, so at certain periods the germs of existing species may have been chemically affected by circumambient molecules of a particular nature, and thus have given rise to new forms.</p>
<p>In this same year, <time datetime="1853">1853</time>, <abbr>Dr.</abbr> Schaaffhausen published an excellent pamphlet (<i epub:type="se:name.publication.book">Verhand. des Naturhist. Vereins der Preuss. Rheinlands</i>, <abbr>etc.</abbr>), in which he maintains the development of organic forms on the earth. He infers that many species have kept true for long periods, whereas a few have become modified. The distinction of species he explains by the destruction of intermediate graduated forms. “Thus living plants and animals are not separated from the extinct by new creations, but are to be regarded as their descendants through continued reproduction.”</p>
<p>In this same year, <time datetime="1853">1853</time>, <abbr>Dr.</abbr> Schaaffhausen published an excellent pamphlet (<i epub:type="se:name.publication.book"><abbr>Verhand.</abbr> des Naturhist. Vereins der Preuss. Rheinlands</i>, <abbr>etc.</abbr>), in which he maintains the development of organic forms on the earth. He infers that many species have kept true for long periods, whereas a few have become modified. The distinction of species he explains by the destruction of intermediate graduated forms. “Thus living plants and animals are not separated from the extinct by new creations, but are to be regarded as their descendants through continued reproduction.”</p>
<p>A well-known French botanist, <abbr class="name">M.</abbr> Lecoq, writes in <time datetime="1854">1854</time> (<i epub:type="se:name.publication.book">Etudes sur Geograph <abbr>Bot.</abbr></i> <abbr>tom.</abbr> <span epub:type="z3998:roman">i</span>, page 250), “<i xml:lang="fr">On voit que nos recherches sur la fixité ou la variation de lespèce, nous conduisent directement aux idées émises par deux hommes justement célèbres, Geoffroy Saint-Hilaire et Goethe.</i>” Some other passages scattered through <abbr class="name">M.</abbr> Lecoqs large work make it a little doubtful how far he extends his views on the modification of species.</p>
<p>The “Philosophy of Creation” has been treated in a masterly manner by the <abbr>Rev.</abbr> Baden Powell, in his <i epub:type="se:name.publication.book">Essays on the Unity of Worlds</i>, <time datetime="1855">1855</time>. Nothing can be more striking than the manner in which he shows that the introduction of new species is “a regular, not a casual phenomenon,” or, as Sir John Herschel expresses it, “a natural in contradistinction to a miraculous process.”</p>
<p>The third volume of the <i epub:type="se:name.publication.journal">Journal of the Linnean Society</i> contains papers, read <time datetime="1858-07-01">July 1, 1858</time>, by <abbr>Mr.</abbr> Wallace and myself, in which, as stated in the introductory remarks to this volume, the theory of natural selection is promulgated by <abbr>Mr.</abbr> Wallace with admirable force and clearness.</p>