/* ** Command & Conquer Renegade(tm) ** Copyright 2025 Electronic Arts Inc. ** ** This program is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program. If not, see . */ #ifndef CVEC_H #define CVEC_H typedef float Vector[3]; #define FABS(f) (float(fabs(f))) //--------------------------------------------------------------------------- inline void Add (const Vector u, const Vector v, Vector sum) { sum[0] = u[0] + v[0]; sum[1] = u[1] + v[1]; sum[2] = u[2] + v[2]; } //--------------------------------------------------------------------------- inline void Sub (const Vector u, const Vector v, Vector diff) { diff[0] = u[0] - v[0]; diff[1] = u[1] - v[1]; diff[2] = u[2] - v[2]; } //--------------------------------------------------------------------------- inline float Dot (const Vector u, const Vector v) { return u[0]*v[0] + u[1]*v[1] + u[2]*v[2]; } //--------------------------------------------------------------------------- inline void ScalarMult (const float scalar, const Vector u, Vector product) { product[0] = scalar*u[0]; product[1] = scalar*u[1]; product[2] = scalar*u[2]; } //--------------------------------------------------------------------------- inline int Invert3x3 (const float a[3][3], float ainv[3][3]) { // Invert a 3x3 using cofactors. This is about 8 times faster than // the Numerical Recipes code which uses Gaussian elimination. ainv[0][0] = a[1][1]*a[2][2]-a[1][2]*a[2][1]; ainv[0][1] = a[0][2]*a[2][1]-a[0][1]*a[2][2]; ainv[0][2] = a[0][1]*a[1][2]-a[0][2]*a[1][1]; ainv[1][0] = a[1][2]*a[2][0]-a[1][0]*a[2][2]; ainv[1][1] = a[0][0]*a[2][2]-a[0][2]*a[2][0]; ainv[1][2] = a[0][2]*a[1][0]-a[0][0]*a[1][2]; ainv[2][0] = a[1][0]*a[2][1]-a[1][1]*a[2][0]; ainv[2][1] = a[0][1]*a[2][0]-a[0][0]*a[2][1]; ainv[2][2] = a[0][0]*a[1][1]-a[0][1]*a[1][0]; float det = a[0][0]*ainv[0][0]+a[0][1]*ainv[1][0]+a[0][2]*ainv[2][0]; if (FABS(det) <= 1e-06f ) return 0; float invdet = 1.0f/det; for (int row = 0; row < 3; row++) for (int col = 0; col < 3; col++) ainv[row][col] *= invdet; return 1; } //--------------------------------------------------------------------------- inline void MultiplyVM (Vector input, float m[3][3], Vector output) { output[0] = input[0]*m[0][0] + input[1]*m[1][0] + input[2]*m[2][0]; output[1] = input[0]*m[0][1] + input[1]*m[1][1] + input[2]*m[2][1]; output[2] = input[0]*m[0][2] + input[1]*m[1][2] + input[2]*m[2][2]; } //--------------------------------------------------------------------------- inline void MultiplyMM (const float A[3][3], const float B[3][3], float AB[3][3]) { for (int row = 0; row < 3; row++) { for (int col = 0; col < 3; col++) { AB[row][col] = 0.0f; for (int mid = 0; mid < 3; mid++) AB[row][col] += A[row][mid]*B[mid][col]; } } } #endif