/*
** Command & Conquer Renegade(tm)
** Copyright 2025 Electronic Arts Inc.
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see .
*/
/***********************************************************************************************
*** C O N F I D E N T I A L --- W E S T W O O D S T U D I O S ***
***********************************************************************************************
* *
* Project Name : Command & Conquer *
* *
* $Archive:: /VSS_Sync/wwlib/int.h $*
* *
* $Author:: Vss_sync $*
* *
* $Modtime:: 3/21/01 12:01p $*
* *
* $Revision:: 8 $*
* *
*---------------------------------------------------------------------------------------------*
* Functions: *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
#ifndef INT_H
#define INT_H
#include "mpmath.h"
#include "straw.h"
#include
#include
#include
#ifdef __BORLANDC__
#pragma warn -inl
#endif
template struct RemainderTable;
template T Gcd(const T & a, const T & n);
#ifdef _UNIX
#define FN_TEMPLATE <>
#else
#define FN_TEMPLATE
#endif
template
class Int {
public:
/*
** Constructors and initializers.
*/
Int(void) {XMP_Init(®[0], 0, PRECISION);}
Int(unsigned long value) {XMP_Init(®[0], value, PRECISION);}
void Randomize(Straw & rng, int bitcount) {XMP_Randomize(®[0], rng, bitcount, PRECISION);}
void Randomize(Straw & rng, const Int & minval, const Int & maxval) {XMP_Randomize_Bounded(®[0], rng, minval, maxval, PRECISION); reg[0] |= 1;}
/*
** Convenient conversion operators to get at the underlying array of
** integers. Big number math is basically manipulation of arbitrary
** length arrays.
*/
operator digit * () {return & reg[0];}
operator const digit * () const {return & reg[0];}
/*
** Array access operator (references bit position). Bit 0 is the first bit.
*/
bool operator[](unsigned bit) const {return(XMP_Test_Bit(®[0], bit));}
/*
** Unary operators.
*/
Int & operator ++ (void) {XMP_Inc(®[0], PRECISION);return(*this);}
Int & operator -- (void) {XMP_Dec(®[0], PRECISION);return(*this);}
int operator ! (void) const {return(XMP_Test_Eq_Int(®[0], 0, PRECISION));}
Int operator ~ (void) {XMP_Not(®[0], PRECISION);return(*this);}
Int operator - (void) const {Int a = *this;a.Negate();return (a);}
/*
** Attribute query functions.
*/
int ByteCount(void) const {return(XMP_Count_Bytes(®[0], PRECISION));}
int BitCount(void) const {return(XMP_Count_Bits(®[0], PRECISION));}
bool Is_Negative(void) const {return(XMP_Is_Negative(®[0], PRECISION));}
unsigned MaxBitPrecision() const {return PRECISION*(sizeof(unsigned long)*CHAR_BIT);}
bool IsSmallPrime(void) const {return(XMP_Is_Small_Prime(®[0], PRECISION));}
bool SmallDivisorsTest(void) const {return(XMP_Small_Divisors_Test(®[0], PRECISION));}
bool FermatTest(unsigned rounds) const {return(XMP_Fermat_Test(®[0], rounds, PRECISION));}
bool IsPrime(void) const {return(XMP_Is_Prime(®[0], PRECISION));}
bool RabinMillerTest(Straw & rng, unsigned int rounds) const {return(XMP_Rabin_Miller_Test(rng, ®[0], rounds, PRECISION));}
/*
** 'in-place' binary operators.
*/
Int & operator += (const Int & number) {Carry = XMP_Add(®[0], ®[0], number, 0, PRECISION);return(*this);}
Int & operator -= (const Int & number) {Borrow = XMP_Sub(®[0], ®[0], number, 0, PRECISION);return(*this);}
Int & operator *= (const Int & multiplier) {Remainder = *this;Error=XMP_Signed_Mult(®[0], Remainder, multiplier, PRECISION);return(*this);}
Int & operator /= (const Int & t) {*this = (*this) / t;return *this;}
Int & operator %= (const Int & t) {*this = (*this) % t;return *this;}
Int & operator <<= (int bits) {XMP_Shift_Left_Bits(®[0], bits, PRECISION);return *this;}
Int & operator >>= (int bits) {XMP_Shift_Right_Bits(®[0], bits, PRECISION);return *this;}
/*
** Mathematical binary operators.
*/
Int operator + (const Int & number) const {Int term;Carry = XMP_Add(term, ®[0], number, 0, PRECISION);return(term);}
Int operator + (unsigned short b) const {Int result;Carry=XMP_Add_Int(result, ®[0], b, 0, PRECISION);return(result);}
Int operator - (const Int & number) const {Int term;Borrow = XMP_Sub(term, ®[0], number, 0, PRECISION);return(term);}
Int operator - (unsigned short b) const {Int result;Borrow = XMP_Sub_Int(result, ®[0], b, 0, PRECISION);return(result);}
Int operator * (const Int & multiplier) const {Int result;Error=XMP_Signed_Mult(result, ®[0], multiplier, PRECISION);return result;}
Int operator * (unsigned short b) const {Int result;Error=XMP_Unsigned_Mult_Int(result, ®[0], b, PRECISION);return(result);}
Int operator / (const Int & divisor) const {Int quotient = *this;XMP_Signed_Div(Remainder, quotient, ®[0], divisor, PRECISION);return (quotient);}
Int operator / (unsigned long b) const {return(*this / Int(b));}
Int operator / (unsigned short divisor) const {Int quotient;Error=XMP_Unsigned_Div_Int(quotient, ®[0], divisor, PRECISION);return(quotient);}
Int operator % (const Int & divisor) const {Int remainder;XMP_Signed_Div(remainder, Remainder, ®[0], divisor, PRECISION);return(remainder);}
Int operator % (unsigned long b) const {return(*this % Int(b));}
unsigned short operator % (unsigned short divisor) const {return(XMP_Unsigned_Div_Int(Remainder, ®[0], divisor, PRECISION));}
/*
** Bitwise binary operators.
*/
Int operator >> (int bits) const {Int result = *this; XMP_Shift_Right_Bits(result, bits, PRECISION);return result;}
Int operator << (int bits) const {Int result = *this; XMP_Shift_Left_Bits(result, bits, PRECISION);return result;}
/*
** Comparison binary operators.
*/
int operator == (const Int &b) const {return (memcmp(®[0], &b.reg[0], (MAX_BIT_PRECISION/CHAR_BIT))==0);}
int operator != (const Int& b) const {return !(*this == b);}
int operator > (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) > 0);}
int operator >= (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) >= 0);}
int operator < (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) < 0);}
int operator <= (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) <= 0);}
/*
** Misc. mathematical and logical functions.
*/
void Negate(void) {XMP_Neg(®[0], PRECISION);}
Int Abs(void) {XMP_Abs(®[0], PRECISION);return(*this);}
Int exp_b_mod_c(const Int & e, const Int & m) const {
Int result;
Error=XMP_Exponent_Mod(result, ®[0], e, m, PRECISION);
return result;
}
void Set_Bit(int index) { XMP_Set_Bit(®[0], index); }
static Int Unsigned_Mult(Int const & multiplicand, Int const & multiplier) {Int product;Error=XMP_Unsigned_Mult(&product.reg[0], &multiplicand.reg[0], &multiplier.reg[0], PRECISION);return(product);}
static void Unsigned_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {Error=XMP_Unsigned_Div(remainder, quotient, dividend, divisor, PRECISION);}
static void Signed_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {XMP_Signed_Div(remainder, quotient, dividend, divisor, PRECISION);}
Int Inverse(const Int & modulus) const {Int result;XMP_Inverse_A_Mod_B(result, ®[0], modulus, PRECISION);return(result);}
static Int Decode_ASCII(char const * string) {Int result;XMP_Decode_ASCII(string, result, PRECISION);return(result);}
// Number (sign independand) inserted into buffer.
int Encode(unsigned char *output) const {return(XMP_Encode(output, ®[0], PRECISION));}
int Encode(unsigned char * output, unsigned length) const {return(XMP_Encode_Bounded(output, length, ®[0], PRECISION));}
void Signed_Decode(const unsigned char * from, int frombytes) {XMP_Signed_Decode(®[0], from, frombytes, PRECISION);}
void Unsigned_Decode(const unsigned char * from, int frombytes) {XMP_Unsigned_Decode(®[0], from, frombytes, PRECISION);}
// encode Int using Distinguished Encoding Rules, returns size of output
int DEREncode(unsigned char * output) const {return(XMP_DER_Encode(®[0], output, PRECISION));}
void DERDecode(const unsigned char *input) {XMP_DER_Decode(®[0], input, PRECISION);}
// Friend helper functions.
friend Int Gcd FN_TEMPLATE (const Int &, const Int &);
static int Error;
// Carry result from last addition.
static bool Carry;
// Borrow result from last subtraction.
static bool Borrow;
// Remainder value from the various division routines.
static Int Remainder;
digit reg[PRECISION];
friend struct RemainderTable< Int >;
};
template
struct RemainderTable
{
RemainderTable(const T & p) : HasZeroEntry(false)
{
int primesize = XMP_Fetch_Prime_Size();
unsigned short const * primetable = XMP_Fetch_Prime_Table();
for (int i = 0; i < primesize; i++) {
table[i] = p % primetable[i];
}
}
bool HasZero() const {return(HasZeroEntry);}
void Increment(unsigned short increment = 1)
{
int primesize = XMP_Fetch_Prime_Size();
unsigned short const * primetable = XMP_Fetch_Prime_Table();
HasZeroEntry = false;
for (int i = 0; i < primesize; i++) {
table[i] += increment;
while (table[i] >= primetable[i]) {
table[i] -= primetable[i];
}
HasZeroEntry = (HasZeroEntry || !table[i]);
}
}
void Increment(const RemainderTable & rtQ)
{
HasZeroEntry = false;
int primesize = XMP_Fetch_Prime_Size();
unsigned short const * primetable = XMP_Fetch_Prime_Table();
for (int i = 0; i < primesize; i++) {
table[i] += rtQ.table[i];
if (table[i] >= primetable[i]) {
table[i] -= primetable[i];
}
HasZeroEntry = (HasZeroEntry || !table[i]);
}
}
bool HasZeroEntry;
unsigned short table[3511];
};
template
T Gcd(const T & a, const T & n)
{
T g[3]={n, a, 0UL};
unsigned int i = 1;
while (!!g[i%3]) {
g[(i+1)%3] = g[(i-1)%3] % g[i%3];
i++;
}
return g[(i-1)%3];
}
#if defined(__WATCOMC__)
#pragma warning 604 9
#pragma warning 595 9
#endif
template
T Generate_Prime(Straw & rng, int pbits, T const *)
{
T minQ = (T(1UL) << (unsigned short)(pbits-(unsigned short)2));
T maxQ = ((T(1UL) << (unsigned short)(pbits-(unsigned short)1)) - (unsigned short)1);
T q;
T p;
do {
q.Randomize(rng, minQ, maxQ);
p = (q*2) + (unsigned short)1;
RemainderTable rtQ(q);
RemainderTable rtP(p);
while (rtQ.HasZero() || rtP.HasZero() || !q.IsPrime() || !p.IsPrime()) {
q += 2;
p += 4;
if (q > maxQ) break;
rtQ.Increment(2);
rtP.Increment(4);
}
} while (q > maxQ);
return(p);
}
#define UNITSIZE 32
#define MAX_BIT_PRECISION 2048
#define MAX_UNIT_PRECISION (MAX_BIT_PRECISION/UNITSIZE)
typedef Int bignum;
typedef Int BigInt;
#endif