This repository has been archived on 2025-02-27. You can view files and clone it, but cannot push or open issues or pull requests.
CnC_Renegade/Code/WWMath/ode.cpp

367 lines
15 KiB
C++

/*
** Command & Conquer Renegade(tm)
** Copyright 2025 Electronic Arts Inc.
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Header: /Commando/Code/wwmath/ODE.CPP 8 7/02/99 10:32a Greg_h $ */
/***********************************************************************************************
*** Confidential - Westwood Studios ***
***********************************************************************************************
* *
* Project Name : Commando *
* *
* $Archive:: /Commando/Code/wwmath/ODE.CPP $*
* *
* Author:: Greg_h *
* *
* $Modtime:: 6/25/99 6:23p $*
* *
* $Revision:: 8 $*
* *
*---------------------------------------------------------------------------------------------*
* Functions: *
* Euler_Integrate -- uses Eulers method to integrate a system of ODE's *
* Midpoint_Integrate -- midpoint method (Runge-Kutta 2) for integration *
* Runge_Kutta_Integrate -- Runge Kutta 4 method *
* Runge_Kutta5_Integrate -- 5th order Runge-Kutta *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#include "ode.h"
#include <assert.h>
static StateVectorClass Y0;
static StateVectorClass Y1;
static StateVectorClass _WorkVector0;
static StateVectorClass _WorkVector1;
static StateVectorClass _WorkVector2;
static StateVectorClass _WorkVector3;
static StateVectorClass _WorkVector4;
static StateVectorClass _WorkVector5;
static StateVectorClass _WorkVector6;
static StateVectorClass _WorkVector7;
/***********************************************************************************************
* Euler_Solve -- uses Eulers method to integrate a system of ODE's *
* *
* INPUT: *
* odesys - pointer to the ODE system to integrate *
* dt - size of the timestep *
* *
* OUTPUT: *
* state vector in odesys will be updated for the next timestep *
* *
* WARNINGS: *
* *
* HISTORY: *
* 08/11/1997 GH : Created. *
* 6/25/99 GTH : Updated to the new integrator system *
*=============================================================================================*/
void IntegrationSystem::Euler_Integrate(ODESystemClass * sys, float dt)
{
WWASSERT(sys != NULL);
/*
** Get the current state
*/
Y0.Reset();
sys->Get_State(Y0);
Y1.Resize(Y0.Count());
/*
** make aliases to the work-vectors we need
*/
StateVectorClass & dydt = _WorkVector0;
dydt.Resize(Y0.Count());
/*
** Euler method, just evaluate the derivative, multiply
** by the time-step and add to the current state vector.
*/
sys->Compute_Derivatives(0,NULL,&dydt);
Y1.Resize(Y0.Count());
for (int i = 0; i < Y0.Count(); i++) {
Y1[i] = Y0[i] + dydt[i] * dt;
}
sys->Set_State(Y1);
}
/***********************************************************************************************
* Midpoint_Integrate -- midpoint method (Runge-Kutta 2) *
* *
* INPUT: *
* sys - pointer to the ODE system to integrate *
* dt - size of the timestep *
* *
* OUTPUT: *
* state vector in odesys will be updated for the next timestep *
* *
* WARNINGS: *
* *
* HISTORY: *
* 08/11/1997 GH : Created. *
* 6/25/99 GTH : Updated to the new integrator system *
*=============================================================================================*/
void IntegrationSystem::Midpoint_Integrate(ODESystemClass * sys,float dt)
{
int i;
/*
** Get the current state
*/
Y0.Reset();
sys->Get_State(Y0);
Y1.Resize(Y0.Count());
/*
** make aliases to the work-vectors we need
*/
StateVectorClass & dydt = _WorkVector0;
StateVectorClass & ymid = _WorkVector1;
dydt.Resize(Y0.Count());
ymid.Resize(Y0.Count());
/*
** MidPoint method, first evaluate the derivitives of the
** state vector just like the Euler method.
*/
sys->Compute_Derivatives(0.0f,NULL,&dydt);
/*
** Compute the midpoint between the Euler solution and
** the input values.
*/
for (i=0; i<Y0.Count(); i++) {
ymid[i] = Y0[i] + dt * dydt[i] / 2.0f;
}
/*
** Re-compute derivatives at this point.
*/
sys->Compute_Derivatives(dt/2.0f,&ymid,&dydt);
/*
** Use these derivatives to compute the solution.
*/
for (i=0; i<Y0.Count(); i++) {
Y1[i] = Y0[i] + dt * dydt[i];
}
sys->Set_State(Y1);
}
/***********************************************************************************************
* Runge_Kutta_Integrate -- Runge Kutta 4 method *
* *
* INPUT: *
* odesys - pointer to the ODE system to integrate *
* dt - size of the timestep *
* *
* OUTPUT: *
* state vector in odesys will be updated for the next timestep *
* *
* WARNINGS: *
* *
* HISTORY: *
* 08/11/1997 GH : Created. *
*=============================================================================================*/
void IntegrationSystem::Runge_Kutta_Integrate(ODESystemClass * sys,float dt)
{
int i;
float dt2 = dt / 2.0f;
float dt6 = dt / 6.0f;
/*
** Get the current state
*/
Y0.Reset();
sys->Get_State(Y0);
Y1.Resize(Y0.Count());
/*
** make aliases to the work-vectors we need
*/
StateVectorClass & dydt = _WorkVector0;
StateVectorClass & dym = _WorkVector1;
StateVectorClass & dyt = _WorkVector2;
StateVectorClass & yt = _WorkVector3;
dydt.Resize(Y0.Count());
dym.Resize(Y0.Count());
dyt.Resize(Y0.Count());
yt.Resize(Y0.Count());
/*
** First Step
*/
sys->Compute_Derivatives(0.0f,NULL,&dydt);
for (i=0; i<Y0.Count(); i++) {
yt[i] = Y0[i] + dt2 * dydt[i];
}
/*
** Second Step
*/
sys->Compute_Derivatives(dt2, &yt, &dyt);
for (i=0; i<Y0.Count(); i++) {
yt[i] = Y0[i] + dt2 * dyt[i];
}
/*
** Third Step
*/
sys->Compute_Derivatives(dt2, &yt, &dym);
for (i=0; i<Y0.Count(); i++) {
yt[i] = Y0[i] + dt*dym[i];
dym[i] += dyt[i];
}
/*
** Fourth Step
*/
sys->Compute_Derivatives(dt, &yt, &dyt);
for (i=0; i<Y0.Count(); i++) {
Y1[i] = Y0[i] + dt6 * (dydt[i] + dyt[i] + 2.0f*dym[i]);
}
sys->Set_State(Y1);
}
/***********************************************************************************************
* Runge_Kutta5_Integrate -- 5th order Runge-Kutta *
* *
* INPUT: *
* odesys - pointer to the ODE system to integrate *
* dt - size of the timestep *
* *
* OUTPUT: *
* state vector in odesys will be updated for the next timestep *
* *
* WARNINGS: *
* *
* HISTORY: *
* 08/11/1997 GH : Created. *
* 6/25/99 GTH : Converted to the new Integrator system *
*=============================================================================================*/
void IntegrationSystem::Runge_Kutta5_Integrate(ODESystemClass * odesys,float dt)
{
int i;
int veclen;
static const float a2 = 0.2f;
static const float a3 = 0.3f;
static const float a4 = 0.6f;
static const float a5 = 1.0f;
static const float a6 = 0.875f;
static const float b21 = 0.2f;
static const float b31 = 3.0f/40.0f;
static const float b32 = 9.0f/40.0f;
static const float b41 = 0.3f;
static const float b42 = -0.9f;
static const float b43 = 1.2f;
static const float b51 = -11.0f /54.0f;
static const float b52 = 2.5f;
static const float b53 = -70.0f/27.0f;
static const float b54 = 35.0f/27.0f;
static const float b61 = 1631.0f/55296.0f;
static const float b62 = 175.0f/512.0f;
static const float b63 = 575.0f/13824.0f;
static const float b64 = 44275.0f/110592.0f;
static const float b65 = 253.0f/4096.0f;
static const float c1 = 37.0f/378.0f;
static const float c3 = 250.0f/621.0f;
static const float c4 = 125.0f/594.0f;
static const float c6 = 512.0f/1771.0f;
static const float dc5 = -277.0f/14336.0f;
static const float dc1 = c1 - 2825.0f/27648.0f;
static const float dc3 = c3 - 18575.0f/48384.0f;
static const float dc4 = c4 - 13525.0f/55296.0f;
static const float dc6 = c6 - 0.25f;
/*
** Get the current state
*/
Y0.Reset();
odesys->Get_State(Y0);
veclen = Y0.Count();
Y1.Resize(veclen);
/*
** make aliases to the work-vectors we need
*/
StateVectorClass & dydt = _WorkVector0;
StateVectorClass & ak2 = _WorkVector1;
StateVectorClass & ak3 = _WorkVector2;
StateVectorClass & ak4 = _WorkVector3;
StateVectorClass & ak5 = _WorkVector4;
StateVectorClass & ak6 = _WorkVector5;
StateVectorClass & ytmp = _WorkVector6;
StateVectorClass & yerr = _WorkVector7;
dydt.Resize(veclen);
ak2.Resize(veclen);
ak3.Resize(veclen);
ak4.Resize(veclen);
ak5.Resize(veclen);
ak6.Resize(veclen);
ytmp.Resize(veclen);
yerr.Resize(veclen);
// First step
odesys->Compute_Derivatives(0.0f,NULL,&dydt);
for (i=0;i<veclen;i++) {
ytmp[i] = Y0[i] + b21*dt*dydt[i];
}
// Second step
odesys->Compute_Derivatives(a2*dt, &ytmp, &ak2);
for (i=0; i<veclen; i++) {
ytmp[i] = Y0[i] + dt*(b31*dydt[i] + b32*ak2[i]);
}
// Third step
odesys->Compute_Derivatives(a3*dt, &ytmp, &ak3);
for (i=0; i<veclen; i++) {
ytmp[i] = Y0[i] + dt*(b41*dydt[i] + b42*ak2[i] + b43*ak3[i]);
}
// Fourth step
odesys->Compute_Derivatives(a4*dt, &ytmp, &ak4);
for (i=0; i<veclen; i++) {
ytmp[i] = Y0[i] + dt*(b51*dydt[i] + b52*ak2[i] + b53*ak3[i] + b54*ak4[i]);
}
// Fifth step
odesys->Compute_Derivatives(a5*dt, &ytmp, &ak5);
for (i=0; i<veclen; i++) {
ytmp[i] = Y0[i] + dt*(b61*dydt[i] + b62*ak2[i] + b63*ak3[i] + b64*ak4[i] + b65*ak5[i]);
}
// Sixth step
odesys->Compute_Derivatives(a6*dt, &ytmp, &ak6);
for (i=0; i<veclen; i++) {
Y1[i] = Y0[i] + dt*(c1*dydt[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]);
}
// Error approximation!
// (maybe I should use this someday? nah not going to use this integrator anyway...)
for (i=0; i<veclen; i++) {
yerr[i] = dt*(dc1*dydt[i] + dc3*ak3[i] + dc4*ak4[i] + dc5*ak5[i] + dc6*ak6[i]);
}
odesys->Set_State(Y1);
}