This repository has been archived on 2025-02-27. You can view files and clone it, but cannot push or open issues or pull requests.
CnC_Renegade/Code/wwlib/sampler.cpp

263 lines
No EOL
12 KiB
C++

/*
** Command & Conquer Renegade(tm)
** Copyright 2025 Electronic Arts Inc.
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/***********************************************************************************************
*** C O N F I D E N T I A L --- W E S T W O O D S T U D I O S ***
***********************************************************************************************
* *
* Project Name : Sampler *
* *
* $Archive:: /VSS_Sync/wwlib/sampler.cpp $*
* *
* Original Author:: Hector Yee *
* *
* $Author:: Vss_sync $*
* *
* $Modtime:: 8/29/01 10:25p $*
* *
* $Revision:: 1 $*
* *
*---------------------------------------------------------------------------------------------*
* Functions: *
* RandomSamplingClass::Sample -- Samples randomly over a hypercube using Mersenne Twister *
* RegularSamplingClass::Sample -- Samples over a regular hypergrid *
* StratifiedSamplingClass::Sample -- samples over a regular hypergrid with random offset *
* QMCSamplingClass::Sample -- Samples using the Halton sequence *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
// Use Random Sampling if you're not sure
// Use Regular Sampling if you're not concerned about bias
// Use Stratified Sampling if you want good results in low dimensions
// Use QMC if you want low discrepancy and you want reproduceablility
#include "sampler.h"
#include "random.h"
#include <math.h>
#include <assert.h>
#include <memory.h>
Random4Class Random;
RandomSamplingClass::RandomSamplingClass(unsigned int dimensions,unsigned char divisions):
SamplingClass(dimensions,divisions)
{
}
/***********************************************************************************************
* RandomSamplingClass::Sample -- Samples randomly over a hypercube using Mersenne Twister *
* *
* *
* *
* *
* INPUT: *
* *
* OUTPUT: *
* *
* WARNINGS: *
* *
* HISTORY: *
* 6/11/2001 hy : Created. *
*=============================================================================================*/
void RandomSamplingClass::Sample(float *target)
{
unsigned int i;
for (i=0; i<Dimensions; i++)
{
target[i]=Random.Get_Float();
}
}
RegularSamplingClass::RegularSamplingClass(unsigned int dimensions,unsigned char divisions):
SamplingClass(dimensions,divisions)
{
index=new unsigned char[Dimensions];
Reset();
}
void RegularSamplingClass::Reset()
{
memset(index,0,sizeof(unsigned char)*Dimensions);
}
RegularSamplingClass::~RegularSamplingClass()
{
delete [] index;
}
/***********************************************************************************************
* RegularSamplingClass::Sample -- Samples over a regular hypergrid *
* *
* *
* *
* *
* INPUT: *
* *
* OUTPUT: *
* *
* WARNINGS: *
* *
* HISTORY: *
* 6/11/2001 hy : Created. *
*=============================================================================================*/
void RegularSamplingClass::Sample(float *target)
{
unsigned int i;
for (i=0; i<Dimensions; i++)
{
// minus one because we want to get 1.0f also
target[i]=(float) index[i]/(Divisions-1.0f);
}
// index[i] will always be 0..Divisons-1
// add 1 and carry mod Divisions
// e.g. increase x until x reaches Divisions
// then and only then increase y. Now z increases
// only when x=Divisions and y=Divisions etc..
for (i=0; i<Dimensions; i++)
{
index[i]++;
if (index[i]<Divisions) break;
index[i]=0;
}
}
StratifiedSamplingClass::StratifiedSamplingClass(unsigned int dimensions,unsigned char divisions):
SamplingClass(dimensions,divisions)
{
index=new unsigned char[Dimensions];
Reset();
}
void StratifiedSamplingClass::Reset()
{
memset(index,0,sizeof(unsigned char)*Dimensions);
}
StratifiedSamplingClass::~StratifiedSamplingClass()
{
delete [] index;
}
/***********************************************************************************************
* StratifiedSamplingClass::Sample -- samples over a regular hypergrid with random offset *
* *
* *
* *
* *
* INPUT: *
* *
* OUTPUT: *
* *
* WARNINGS: *
* *
* HISTORY: *
* 6/11/2001 hy : Created. *
*=============================================================================================*/
void StratifiedSamplingClass::Sample(float *target)
{
unsigned int i;
for (i=0; i<Dimensions; i++)
{
target[i]=(index[i]+Random.Get_Float())/(float) Divisions;
}
// index[i] will always be 0..Divisons-1
// add 1 and carry mod Divisions
// e.g. increase x until x reaches Divisions
// then and only then increase y. Now z increases
// only when x=Divisions and y=Divisions etc..
for (i=0; i<Dimensions; i++)
{
index[i]++;
if (index[i]<Divisions) break;
index[i]=0;
}
}
// first 100 primes
const static int primes[]=
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29
, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
, 73, 79, 83, 89, 97,101,103,107,109,113
,127,131,137,139,149,151,157,163,167,173
,179,181,191,193,197,199,211,223,227,229
,233,239,241,251,257,263,269,271,277,281
,283,293,307,311,313,317,331,337,347,349
,353,359,367,373,379,383,389,397,401,409
,419,421,431,433,439,443,449,457,461,463
,467,479,487,491,499,503,509,521,523,541
};
inline float RadInv(int i,int base)
// returns the radical inverse of i in base b
// basically write a number in base b and reverse it over the decimal point
// e.g. RadInv(1) base 2 = 0.1 base 2 = 0.5
{
float sum=0;
int residue;
float power=1.0f/base;
while (i!=0)
{
residue=i%base;
i/=base;
sum+=residue*power;
power/=base;
}
return sum;
}
QMCSamplingClass::QMCSamplingClass(unsigned int dimensions,unsigned char divisions):
SamplingClass(dimensions,divisions),
index(0)
{
assert(Dimensions<100);
}
/***********************************************************************************************
* QMCSamplingClass::Sample -- Samples using the Halton sequence *
* *
* *
* *
* *
* INPUT: *
* *
* OUTPUT: *
* *
* WARNINGS: *
* *
* HISTORY: *
* 6/11/2001 hy : Created. *
*=============================================================================================*/
void QMCSamplingClass::Sample(float *target)
{
unsigned int i;
for (i=0; i<Dimensions; i++)
{
target[i]=RadInv(index,primes[i]);
}
index++;
}